127 research outputs found

    On Invariant Notions of Segre Varieties in Binary Projective Spaces

    Full text link
    Invariant notions of a class of Segre varieties \Segrem(2) of PG(2^m - 1, 2) that are direct products of mm copies of PG(1, 2), mm being any positive integer, are established and studied. We first demonstrate that there exists a hyperbolic quadric that contains \Segrem(2) and is invariant under its projective stabiliser group \Stab{m}{2}. By embedding PG(2^m - 1, 2) into \PG(2^m - 1, 4), a basis of the latter space is constructed that is invariant under \Stab{m}{2} as well. Such a basis can be split into two subsets whose spans are either real or complex-conjugate subspaces according as mm is even or odd. In the latter case, these spans can, in addition, be viewed as indicator sets of a \Stab{m}{2}-invariant geometric spread of lines of PG(2^m - 1, 2). This spread is also related with a \Stab{m}{2}-invariant non-singular Hermitian variety. The case m=3m=3 is examined in detail to illustrate the theory. Here, the lines of the invariant spread are found to fall into four distinct orbits under \Stab{3}{2}, while the points of PG(7, 2) form five orbits.Comment: 18 pages, 1 figure; v2 - version accepted in Designs, Codes and Cryptograph

    The annual salinity cycle of the Denmark Strait Overflow

    Get PDF
    The Denmark Strait Overflow (DSO) is an important source of dense water input to the deep limb of the Atlantic Meridional Overturning Circulation. It is fed by separate currents from the north that advect dense water masses formed in the Nordic Seas and Arctic Ocean which then converge at Denmark Strait. Here we identify an annual salinity cycle of the DSO, characterized by freshening in winter and spring. The freshening is linked to freshening of the Shelfbreak East Greenland Current in the Blosseville Basin north of the Denmark Strait. We demonstrate that the East Greenland Current advects fresh pycnocline water above the recirculating Atlantic Water, which forms a low salinity lid for the overflow in Denmark Strait and in the Irminger Basin. This concept is supported by intensified freshening of the DSO in lighter density classes on the Greenland side of the overflow. The salinity of the DSO in the Irminger Basin is significantly correlated with northerly/northeasterly winds in the Blosseville Basin at a lag of 3-4 months, consistent with estimated transit times. This suggests that wind driven variability of DSO source water exerts an important influence on the salinity variability of the downstream DSO, and hence the composition of the deep limb of the Atlantic Meridional Overturning Circulation

    Herschel-ATLAS/GAMA: A difference between star formation rates in strong-line and weak-line radio galaxies

    Get PDF
    We have constructed a sample of radio-loud objects with optical spectroscopy from the Galaxy and Mass Assembly (GAMA) project over the Herschel Astrophysical Terahertz Large Area Survey (Herschel-ATLAS) Phase 1 fields. Classifying the radio sources in terms of their optical spectra, we find that strong-emission-line sources ('high-excitation radio galaxies') have, on average, a factor of ~4 higher 250-ÎŒm Herschel luminosity than weak-line ('lowexcitation') radio galaxies and are also more luminous than magnitude-matched radio-quiet galaxies at the same redshift. Using all five H-ATLAS bands, we show that this difference in luminosity between the emission-line classes arises mostly from a difference in the average dust temperature; strong-emission-line sources tend to have comparable dust masses to, but higher dust temperatures than, radio galaxies with weak emission lines. We interpret this as showing that radio galaxies with strong nuclear emission lines are much more likely to be associated with star formation in their host galaxy, although there is certainly not a one-to-one relationship between star formation and strong-line active galactic nuclei (AGN) activity. The strong-line sources are estimated to have star formation rates at least a factor of 3-4 higher than those in the weak-line objects. Our conclusion is consistent with earlier work, generally carried out using much smaller samples, and reinforces the general picture of high-excitation radio galaxies as being located in lower-mass, less evolved host galaxies than their low-excitation counterparts.Peer reviewe

    Herschel-ATLAS: The angular correlation function of submillimetre galaxies at high and low redshift

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern ObservatoryWe present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 ÎŒm-selected sample we detect no significant clustering, consistent with the expectation that the 250 ÎŒm-selected sources are mostly normal galaxies at z 1. For our 350 ÎŒm and 500 ÎŒm-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z~2–3 we detect significant strong clustering, leading to an estimate of r0 ~ 7–11 h-1 Mpc. The slope of our clustering measurements is very steep, ÎŽ ~ 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.Peer reviewe

    Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    Get PDF
    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing both thermally and structurally were performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    H-ATLAS/GAMA: magnification bias tomography. Astrophysical constraints above ~1 arcmin

    Get PDF
    An unambiguous manifestation of the magnification bias is the cross-correlation between two source samples with non-overlapping redshift distributions. In this work we measure and study the cross-correlation signal between a foreground sample of GAMA galaxies with spectroscopic redshifts in the range 0.2<z<0.8, and a background sample of H-ATLAS galaxies with photometric redshifts gsim1.2. It constitutes a substantial improvement over the cross-correlation measurements made by Gonzalez-Nuevo et al. (2014) with updated catalogues and wider area (with S/Ngsim 5 below 10 arcmin and reaching S/N~ 20 below 30 arcsec). The better statistics allow us to split the sample in different redshift bins and to perform a tomographic analysis (with S/Ngsim 3 below 10 arcmin and reaching S/N~ 15 below 30 arcsec). Moreover, we implement a halo model to extract astrophysical information about the background galaxies and the deflectors that are producing the lensing link between the foreground (lenses) and background (sources) samples. In the case of the sources, we find typical mass values in agreement with previous studies: a minimum halo mass to host a central galaxy, Mmin~ 1012.26 M⊙, and a pivot halo mass to have at least one sub-halo satellite, M1~ 1012.84 M⊙. However, the lenses are massive galaxies or even galaxy groups/clusters, with minimum mass of Mminlens~ 1013.06 M⊙. Above a mass of M1lens~ 1014.57 M⊙ they contain at least one additional satellite galaxy which contributes to the lensing effect. The tomographic analysis shows that, while M1lens is almost redshift independent, there is a clear evolution of increase Mminlens with redshift in agreement with theoretical estimations. Finally, the halo modeling allows us to identify a strong lensing contribution to the cross-correlation for angular scales below 30 arcsec. This interpretation is supported by the results of basic but effective simulations
    • 

    corecore