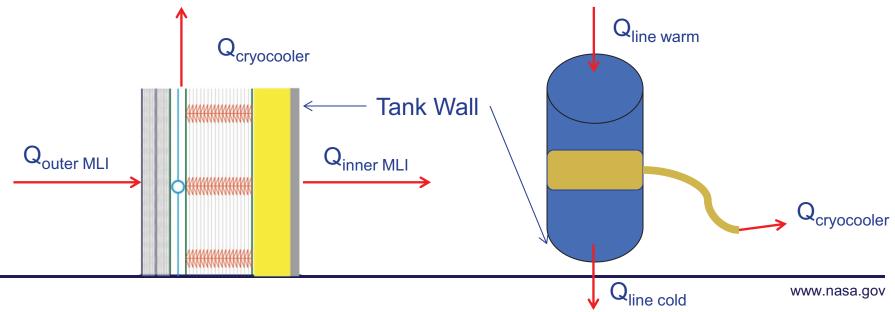
National Aeronautics and Space Administration

metadata, citation and similar papers at core.ac Tank Applied Testing of Loa Multilayer Insulation (LB

Wesley Johnson¹, Juan Valenzuela² Dave Plachta¹

> ¹Glenn Research Center ²Marshall Space Flight Cer ³Ames Research Center

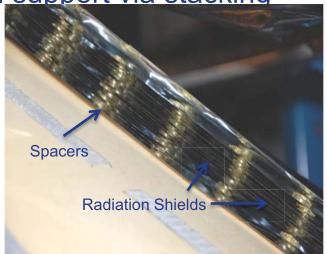
2014 Propulsion and Energy F Cleveland, OH July 28 - 30 brought to you by TCORE


eff Feller³,

um

Reduced Boil-Off

- For long duration storage of cryogenic propellants on orbit, boil-off is a significant problem
 - Reducing the boil-off through active refrigeration may be required if passive insulation systems cannot be built to meet mission requirements
- Lack of large scale 20 K class cryocoolers limits our current availability to do zero boil-off for liquid hydrogen
- Incorporating existing 90 K cryocoolers could still lower heat load by as much as 70% (theoretical)
 - Use a Broad Area Cooling (BAC) shield, similar to a vapor cooled shield, but attached to a cryocooler
 - Cool struts and plumbing in addition to insulation system


Problem Statement

- Demonstrate a system that can:
 - Support a Broad Area Cooling shield in the middle of an MLI blanket
 - Survive launch loads
 - Provide high thermal performance on orbit
 - Survive rapid depressurization
- Solution:
 - Load-Bearing Multilayer Insulation
 - Built by Quest Products & Ball Aerospace
 - Developed through several SBIR contracts

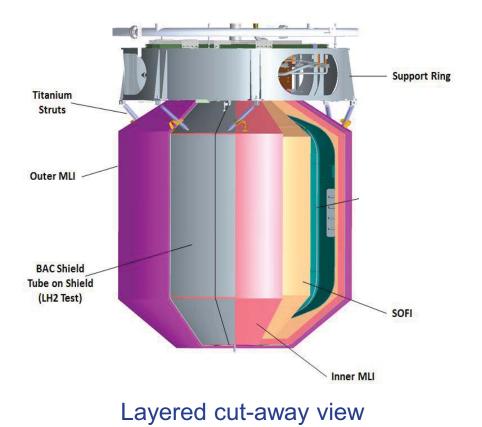
Load Bearing Multilayer Insulation

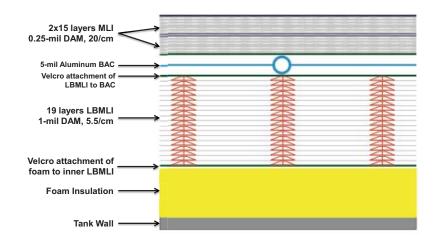
- Uses polymer based stand-offs to separate the layers as opposed to netting
 - Creates a simpler conduction heat transfer network for modeling
 - Allows for more accurate modeling of MLI system
- Can be arranged to provide structural support via stacking spacers
 - Previous testing used plastic stand-offs to support BAC shield
 - No stand-offs required with LB-MLI
- Currently at low (5 layer/cm) layer density
 - Based on current MLI theory, about optimum for 90 100 K warm boundary


 Replaced 30 layer traditional blanket with 19 layer LB-MLI blanket

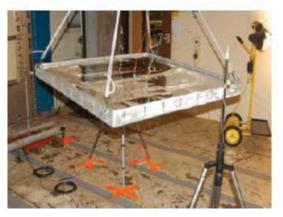
Test Program

Two tanks were fabricated to be as close to identical as possible


- Nearly identical insulation systems were installed on each tank
- One tank was tested with liquid hydrogen for thermal performance
- The other was tested with liquid nitrogen to determine the acoustic environmental effects on the cooled shield/MLI.



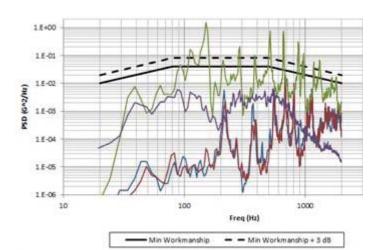
Test Configuration

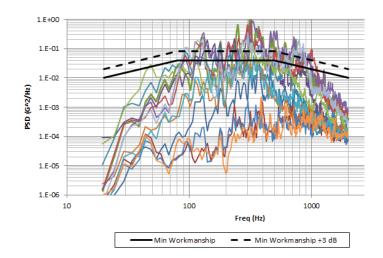


Cross-Sectional View

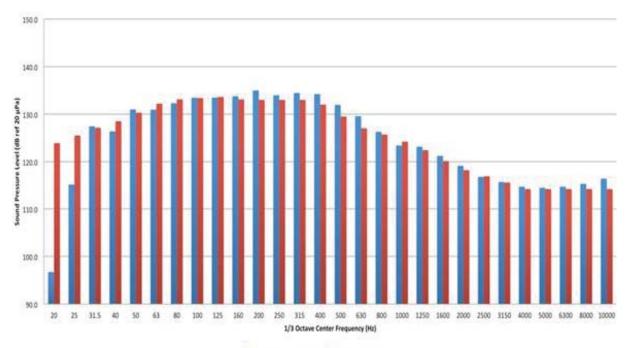
Structural Testing

- In order to demonstrate structural integrity of the blanket, acoustic testing was selected over vibration testing
 - Insulation systems are large area, lightweight systems that respond more to acoustically input energy than vibrationally input energy
- Testing on coupons
 - Unloaded flat panel
 - Loaded curved panel
 - Post test examination for changes (damage)
- Testing on a Tank
 - Thermal testing before and after
 - Post test examination for changes (damage)
- All actual acoustic testing done when system was a room temperature



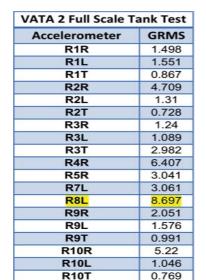


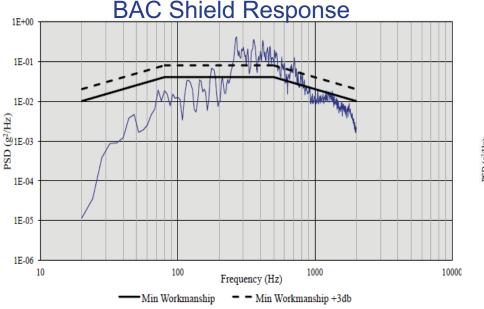
Coupon Test Results

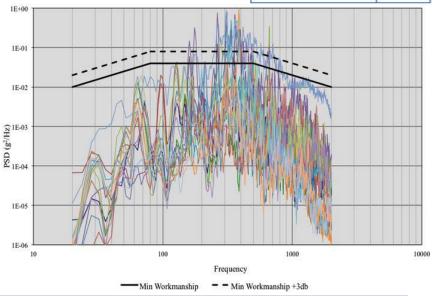

- The dotted black line indicates input levels
- Colored squiggly lines indicate response
- Flat panel test (top)
 - Just LB-MLI, no load attached(i.e. BAC shield, other MLI)
 - Post test inspection revealed no issues (debonding, tearing, etc)
 - Indicated that LB-MLI can survive launch & ascent with no external load
- Curved panel test (bottom)
 - Included BAC shield mass simulator and outer MLI
 - Post test inspection revealed no issues
 - Indicated that LB-MLI can survive launch & ascent with load attached
- Both tests combined indicated that LB-MLI was ready to proceed with tank applied testing

Tank Applied Test Setup

VATA 2 Microphone Average Protoqual Criteria


Accel #	Description	Туре
1	On gusset, near strut attach point	Triax
2	On tank, near strut attach point	Triax
3	On support column, top surface	Triax
4	On tank surface, mid-barrel section	Uniaxial
5	Same as #4, clocked 120 degrees around tank	Uniaxial
7	On top of tank	Uniaxial
8	On bottom of tank	Uniaxial
9	On gusset, near strut attach point	Triax
10	On tank, near strut attach point	Triax





Tank Applied Acoustic Testing Results

- Pre and Post Test Thermal testing using LN2
 - Heat load of 7.5 W on both tests
 - When running chilled GN2 through BAC shield tubing, heat load of 4.5 W on both tests
 - No gas leaks in tubing degrading performance
- Post test inspection found no issues
 - No debonding of spacers, no tears of MLI, no warping of MLI blanket
- Maximum acceleration level on BAC shield: 8.7 G_{RMS}
 - Original level for concern was 6 G_{RMS}
 - After no damage found, at 8.7G_{RMS}, level of concern was upped to 10 G_{RMS}

Thermal Testing

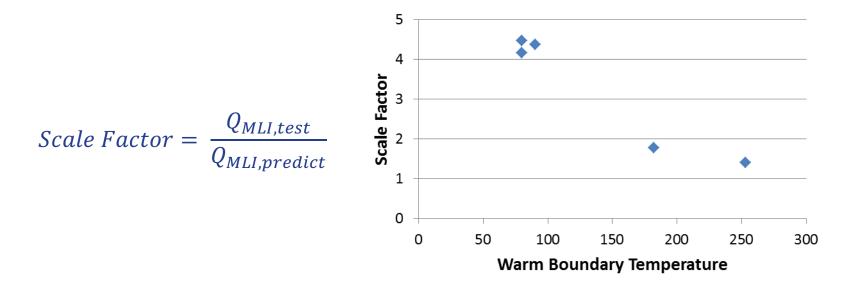
- In order to demonstrate thermal viability, a thermal vacuum test was run using liquid hydrogen
 - Broad Area Cooled (BAC)
 Shield was integrated on top of the blanket
 - BAC shield was coupled to a cryocooler
 - Testing with and without cryocooler operational
- Pre-test coupons were tested
 using liquid nitrogen

	1	T. 1/	ти	Measured	Model Q,	%	05
	layers	Tc, K	Th, K	Q, W/m ²	W/m ²	difference	SF
Ball	10	76	296	0.95	0.91	-4.3%	1.05
KSC	20	77	292	0.41	0.43	5.6%	0.95
KSC	20	77	305	0.57	0.51	-11%	1.12
Ball	3	76	296	3.62	3.02	-16%	1.20
KSC	9	78	293	0.92	0.97	5.2%	0.95
	9	78	325	1.36	1.41	4.0%	0.96
	9	78	316	1.23	1.28	3.5%	0.97
KSC	5	78	293	1.77	1.75	-1.3%	1.01
	5	78	305	1.99	2.02	1.5%	0.99
	5	78	325	2.61	2.54	-2.6%	1.03
KSC	19	78	293	0.55	0.46	-16%	1.18
	19	78	305	0.77	0.51	-34%	1.51
	19	78	327.8	0.85	0.69	-19%	1.23
FSU	4	20	85	0.18	0.11	-42%	1.71
	9	20	85	0.13	0.048	-63%	2.71

Thermal Coupon Results

Scale Factor = $\frac{Q_{MLI,test}}{Q_{MLI,predict}}$

Tank Applied Thermal Test Matrix


Test #		Bypass Valve (open/closed)	Fill Level (%)	Environmental Temperature (K)	Test Type
1	80 K	Open	90	220	Steady State
2	80 K	Open	25	220	Steady State
3	N/A	Open	90	220	Steady State
4	N/A	Closed	90	220	Steady State
5	90 K	Open	90	220	Steady State
6	90 K	Closed	90	220	Steady State
7	N/A	Open	90	300	Rapid Evacuation
8	N/A	Open	90	300	Steady State

Note: Bypass Valve was to allow for testing with and without Thermo-Acoustic Oscillations (TAO)

Tank Applied Thermal Test Results

Test #	Heat Load to Tank (W)		Net Remainder (W)	MLI Penetrations (W)	MLI Heat Load (W)	MLI Heat Flux (mW/m ²)	Predicted MLI Heat Flux (mW/m ²)
1	1.67	0.94	0.73	0.17	0.56	79	19
2	1.68	0.97	0.71	0.17	0.54	76	17
3	3.32	1.69	1.63	0.17	1.46	207	116
5	1.83	1.01	0.82	0.17	0.64	92	21
8	6.12	2.77	3.35	0.28	3.07	436	310

Rapid Depressurization

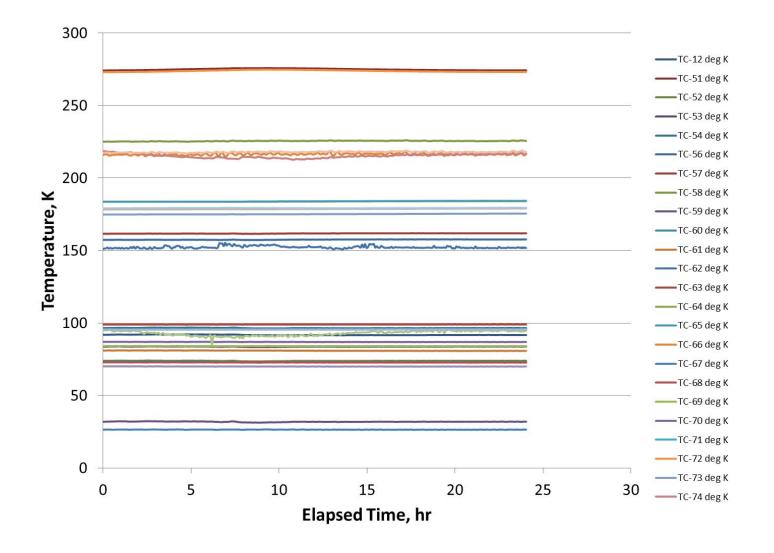
- Rapid Depressurization was performed
 - Simulates the first few minutes to hours of mission
 - Attempted twice, both times got through the rough pumping portion but had trouble switching to turbo/diffusion pumps
 - Issues with gaseous nitrogen evacuation due to the formation of solid nitrogen at the bottom on the MLI blanket
 - Attempted with helium gas and was fully successful

Post Test Evaluation

- Post test evaluation showed divoting and cracking of the SOFI, further investigation yielded:
 - Tank was stainless steel, not aluminum, SOFI shrinkage optimized for aluminum
 - SOFI was up to 4" thick in some places, recommend not greater than 1.5" to 2" thick in future
 - Velcro may have added extra stresses to cause more cracking

Conclusion

- Demonstrated a system (LB-MLI) that can:
 - Support a Broad Area Cooling shield in the middle of an MLI blanket
 - Survive launch loads
 - Heat load of less than 0.1 W/m² through the MLI with the cryocooler on and 0.2 W/m² with the cryocooler off.
 - Survive rapid depressurization
- Noticed increasing scale factor with decreasing temperature, first cut analysis indicates it is a radiation issue
 - This is not an LB-MLI specific problem
 - Was worse on previous traditional MLI blanket testing
- SOFI had issues handling combined loads during rapid depressurization
 - partially a design issue
 - more investigation needed to fully understand



Acknowledgments

- The Small Multipurpose Research Facility Test Team (Glenn Research Center – Tank Applied Thermal Testing)
- Bldg 4619 Acoustic Chamber Test Team (Marshall Space Flight Center – Acoustic testing)
- Environmental Systems Test Facility Test Team (Marshall Space Flight Center – Pre/Post-Acoustic Thermal Testing).
- Funding was provided by both the:
 - Cryogenic Propellant Storage and Transfer Technology Demonstration Mission
 - Self-Supporting Multilayer Insulation Project (STMD Game Changing Division)

Questions?

