386 research outputs found

    Narrowband Biphotons: Generation, Manipulation, and Applications

    Full text link
    In this chapter, we review recent advances in generating narrowband biphotons with long coherence time using spontaneous parametric interaction in monolithic cavity with cluster effect as well as in cold atoms with electromagnetically induced transparency. Engineering and manipulating the temporal waveforms of these long biphotons provide efficient means for controlling light-matter quantum interaction at the single-photon level. We also review recent experiments using temporally long biphotons and single photons.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Vomiting and wasting disease associated with hemagglutinating encephalomyelitis viruses infection in piglets in jilin, china

    Get PDF
    One coronavirus strain was isolated from brain tissues of ten piglets with evident clinical manifestations of vomiting, diarrhea and dyskinesia in Jilin province in China. Antigenic and genomic characterizations of the virus (isolate PHEV-JLsp09) were based on multiplex PCR and negative staining electron microscopy and sequence analysis of the Hemagglutinin-esterase (HE) gene. These piglets were diagnosed with Porcine hemagglutinating encephalomyelitis virus (PHEV)

    Prospective, randomized, double-blind, multi-center, Phase III clinical study on transarterial chemoembolization (TACE) combined with Sorafenib® versus TACE plus placebo in patients with hepatocellular cancer before liver transplantation – HeiLivCa [ISRCTN24081794]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disease progression of hepatocellular cancer (HCC) in patients eligible for liver transplantation (LTx) occurs in up to 50% of patients, resulting in withdrawal from the LTx waiting list. Transarterial chemoembolization (TACE) is used as bridging therapy with highly variable response rates. The oral multikinase inhibitor sorafenib significantly increases overall survival and time-to-progression in patients with advanced hepatocellular cancer.</p> <p>Design</p> <p>The HeiLivCa study is a double-blinded, controlled, prospective, randomized multi-centre phase III trial. Patients in study arm A will be treated with transarterial chemoembolization plus sorafenib 400 mg bid. Patients in study arm B will be treated with transarterial chemoembolization plus placebo. A total of 208 patients with histologically confirmed hepatocellular carcinoma or HCC diagnosed according to EASL criteria will be enrolled. An interim patients' analysis will be performed after 60 events. Evaluation of time-to-progression as primary endpoint (TTP) will be performed at 120 events. Secondary endpoints are number of patients reaching LTx, disease control rates, OS, progression free survival, quality of live, toxicity and safety.</p> <p>Discussion</p> <p>As TACE is the most widely used primary treatment of HCC before LTx and sorafenib is the only proven effective systemic treatment for advanced HCC there is a strong rational to combine both treatment modalities. This study is designed to reveal potential superiority of the combined TACE plus sorafenib treatment over TACE alone and explore a new neo-adjuvant treatment concept in HCC before LTx.</p

    Graphene in Lithium-Ion/Lithium-Sulfur Batteries

    Get PDF
    In order to deal with the energy demand of the increasing global population,the use of sustainable sources of energy has become mandatory to attenuate theenvironmental problems that come along with the use of fossil sources of energy.However, one of the problems of renewable energy sources, such as wind or sun,is that they are intermittent. So, in order to make the best use of them, we needgood energy storage systems able to capture, manage and store energy at a largescale and low cost. If we are also capable of replacing the gasoline powered transportationwith electric vehicles, the greenhouse emissions would be significantlyreduced. As well, it is necessary a change in the energetic matrix for stationarydevices to solve the transport cost and the greenhouse emission provokes for theuse of natural gas. Considering this, the major promises to accomplish the needsof high gravimetric, volumetric and power density is given by lithium batteries.In the past decades and up to nowadays, they have become the energy source ofalmost all electronic portable devices and made possible a huge number of technologicalapplications. Graphene based materials, due to their unique properties,have become of great interest to be used in different components of the battery:anode, cathode and separator. As part of the electrodes, used adequately, graphenematerials improve the electron and ionic mobility providing not only higher electricalconductivity, but also higher capacity. Due to the rich carbon chemistry,graphene can be easily functionalized with different groups leading to changes inits properties. In this sense, the nano-sized dimension and elevated specific surfacearea makes it a perfect candidate for improving conductivity, connectivity andlithium-ion transport in both cathode and anode active materials. Functionalizedgraphene is also used in the modification of separators of lithium-sulfur batteriesfor the suppression of the polysulfide shuttle mechanism due to its interaction/repulsion with the charged intermediate polysulfide species. This chapter presentsa critical overview of the state-of-art in the optimization and application ofgraphene derived materials for anodes, cathodes and separators in lithium batteries.Besides a thorough description of novel designs and general discussion of theattained electrochemical performances, this chapter also aims to discuss desiredproperties and current drawbacks for massive industrial application in lithiumbatteries.Fil: Luque, Guillermina Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Para, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Primo, Emiliano Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Calderón, Andrea Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Bracamonte, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Otero, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Rojas, María del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: García Soriano, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Lener, German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentin

    Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes

    Get PDF
    Gas separation membranes are one of the lowest energy technologies available for the separation of carbon dioxide from flue gas. Key to handling the immense scale of this separation is maximised membrane permeability at sufficient selectivity for CO2 over N2. For the first time it is revealed that metals can be post-synthetically exchanged in MOFs to drastically enhance gas transport performance in membranes. Ti-exchanged UiO-66 MOFs have been found to triple the gas permeability without a loss in selectivity due to several effects that include increased affinity for CO2 and stronger interactions between the polymer matrix and the Ti-MOFs. As a result, it is also shown that MOFs optimized in previous works for batch-wise adsorption applications can be applied to membranes, which have lower demands on material quantities. These membranes exhibit exceptional CO2 permeability enhancement of as much as 153% when compared to the non-exchanged UiO-66 mixed-matrix controls, which places them well above the Robeson upper bound at just a 5 wt.% loading. The fact that maximum permeability enhancement occurs at such low loadings, significantly less than the optimum for other MMMs, is a major advantage in large-scale application due to the more attainable quantities of MOF needed

    Transcriptome Sequencing and Characterization for the Sea Cucumber Apostichopus japonicus (Selenka, 1867)

    Get PDF
    Background: Sea cucumbers are a special group of marine invertebrates. They occupy a taxonomic position that is believed to be important for understanding the origin and evolution of deuterostomes. Some of them such as Apostichopus japonicus represent commercially important aquaculture species in Asian countries. Many efforts have been devoted to increasing the number of expressed sequence tags (ESTs) for A. japonicus, but a comprehensive characterization of its transcriptome remains lacking. Here, we performed the large-scale transcriptome profiling and characterization by pyrosequencing diverse cDNA libraries from A. japonicus. Results: In total, 1,061,078 reads were obtained by 454 sequencing of eight cDNA libraries representing different developmental stages and adult tissues in A. japonicus. These reads were assembled into 29,666 isotigs, which were further clustered into 21,071 isogroups. Nearly 40 % of the isogroups showed significant matches to known proteins based on sequence similarity. Gene ontology (GO) and KEGG pathway analyses recovered diverse biological functions and processes. Candidate genes that were potentially involved in aestivation were identified. Transcriptome comparison with the sea urchin Strongylocentrotus purpuratus revealed similar patterns of GO term representation. In addition, 4,882 putative orthologous genes were identified, of which 202 were not present in the non-echinoderm organisms. More than 700 simple sequence repeats (SSRs) and 54,000 single nucleotide polymorphisms (SNPs) were detected in the A. japonicu

    Enzymatic processing of protein-based fibers

    Get PDF
    Wool and silk are major protein fiber materials used by the textile industry. Fiber protein structure-function relationships are briefly described here, and the major enzymatic processing routes for textiles and other novel applications are deeply reviewed. Fiber biomodification is described here with various classes of enzymes such as protease, transglutaminase, tyrosinase, and laccase. It is expected that the reader will get a perspective on the research done as a basis for new applications in other areas such as cosmetics and pharma.This work was financially supported by the National Natural Science Foundation of China (21274055,51373071, 31201134 and 31470509), the Program for New Century Excellent Talents in University (NCET-12-0883), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1135), the Jiangsu Provincial Natural Science Foundation of China (BK2012112), and the Fundamental Research Funds for the Central Universities (JUSRP51312B)

    Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia

    Get PDF
    Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer
    corecore