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Abstract Wool and silk are major protein fiber materials used
by the textile industry. Fiber protein structure-function rela-
tionships are briefly described here, and the major enzymatic
processing routes for textiles and other novel applications are
deeply reviewed. Fiber biomodification is described here with
various classes of enzymes such as protease,
transglutaminase, tyrosinase, and laccase. It is expected that
the reader will get a perspective on the research done as
a basis for new applications in other areas such as cos-
metics and pharma.

Keywords Protein fiber - Biomodification - Protease -
Transglutaminase - Tyrosinase
Introduction

Wool and silk are protein-based materials from animal origin.
Those fibers possess moderate strength, resiliency, elasticity,
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acid resistance, and moisture absorbency. Similar to any other
proteins, the proteins from wool and silk are made of poly-
peptides. In wool and silk, polypeptide chains assemble to
form a fibrous structure. Fibrous proteins are mainly charac-
terized by their protein primary (amino acid sequence and
composition) and secondary structures (hydrogen bonding in-
teraction between the polypeptides). The secondary structure
(Fig. 1a) is an alpha helix for keratin-based fibers like wool or
hair. For silk and spider silk materials, the polypeptide chains
show beta-sheet in secondary structure (Fig. 1b).

Fiber properties such as elasticity and chemical resistance
are derived from the secondary structure of the fiber. Alpha
helix will assemble in a parallel fashion, and the helices can be
stretched inducing higher elasticity in wool and hair fibrous
materials. In the silk-based materials, beta structures also as-
semble in a parallel format, providing a more compact struc-
ture and a higher resistance to chemical attack. The high elas-
ticity and loose structure of wool leads to higher water reten-
tion levels than silk, which results in a fibrous material with
high capacity of wrinkle recovery. Moreover, due to their sec-
ondary structure, wool fibers possess natural crimps which
lead to textile materials with excellent thermal insulation prop-
erties (Braaten 2005). Because of these characteristics, wool
fiber is widely used as a textile material. Silk fiber materials
have more compact protein structures of beta type. These ma-
terials produced by Bombyx mori have softer handle and lus-
ter. Silk fibroins form predominantly crystalline-sheet struc-
tures mainly composed of recurrent amino acid sequences of
alanine, glycine, and serine, which determine the structural
and mechanical characteristics of silk fibers (Hu et al. 2007;
Sionkowska and Planecka 2011). Silk materials do not have
any traceable amounts of cysteine in their structure, while
wool and hair materials have a higher level of cystine cross-
linking. Typical amino acid compositions of wool and silk are
given in Table S1.

@ Springer


http://dx.doi.org/10.1007/s00253-015-6970-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s00253-015-6970-x&domain=pdf

10388 Appl Microbiol Biotechnol (2015) 99:10387-10397
Fig.1 The secondary structure of (a) (b)
wool and silk: a Alpha helix in R NH, N\I-12
secondary structure of wool (right H/E }l'l C . \CH—R CH—R
handed o-helix) and b beta-sheet R N L ““\I;l C/ /
in secondary structure of silk 0 N 0=\, H- --04C\N __H
(parallel [3-pleated sheet) (made |:|‘_,C F{ U N R r A /N/
with ChemDraw adapted from R ( g NT’ C— 7
; | o R—CH R—CH

Kumaran 2010) i H /P _ - AN

E N EN? Cx~p C=

SN P i A R

e W~ H R c rll -~ >CH—R >CH—R

—— —
H =C C

| II-I (0] \ ‘__0¢ _
SN N N

- —CH
e ||'| E/R R—CH R C\C
BT — Hey O H_y O
H : AN
- i CH—R CH—R
8‘“& HE__J:J-/ \N/H"“ >N/H
— I

The difference in the structure between wool and silk is
shown in Fig. 2. Wool fiber presents scales on their surface
(as shown in Fig. 2a), whereas silk fiber exhibits a smooth
surface (as shown in Fig. 2¢). The scales on the wool surface
cause severe felting during washing and thus limit the use of
untreated wool materials as machine-washable textiles
(Simpson 2002). Silk fiber has some inherent disadvantages
such as it is easily damaged during alkaline scouring, it wrin-
kles, and it undergoes photoinduced yellowing (Yang and Li
1993), which narrows its application in textiles and other bio-
material fields (Arai et al. 2001). Wool and silk show a signif-
icant difference in their fine structures. The potentially avail-
able enzymes for their structural degradation are also
highlighted in Fig. 2b, d.

Processing of wool

Wool materials have a tendency to felt due to the presence of
scales (Fig. 2a). Wool fibers would interslide resulting in thicker
fiber assemblies. The scale structure of wool results in less fric-
tion when fiber moves in a rootward direction than in a tipward
direction. This difference in the surface friction between the two
directions is known as the direction friction effect.

Different mechanisms have been put forward to explain
how wool felts. A wool fiber is considered to interact with
other fibers at two points along its length (Fig. 3). At point
B, the interaction is too strong to move in any direction. At
point A, the fiber is less strongly held under mechanical action
(for example, laundering) and it can move relative to the other
fibers. Because of the directional frictional effect, it can move
towards its root but not towards its tip (case 1, Fig. 3a), then
the single fiber’s movement could decrease the distance along
the fiber between the points of interaction and make the fiber
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structure tight. Alternatively, when point B is near the root end
of the fiber (case 2, Fig. 3b), movement towards the root end
increases the distance along the fiber. Both cases 1 and 2
contribute to fabric shrinkage.

The decreasing felting propensity of wool is obtained by
smoothening of the scale structure at the surface fiber
(Fig. 2a). The scale of wool is composed of hydrophobic lipids,
highly crosslinked keratin, and nonkeratinized protein orga-
nized in layers from outer to inner part of the wool. The mod-
ification of the wool surface aiming at damaging or dislodging
the scale has a significant effect on the processing and perfor-
mance of the wool fibers and their assemblies. Lots of innova-
tive and novel technologies for the surface modification of wool
fiber about scale removal have been developed, especially for
the improvement of anti-felting finishing. To date, physical,
chemical, and enzymatic approaches have been widely studied.
Plasma and steam explosion as physical methods could etch or
cleave the surface of the cuticle scales and improve wettability,
dye ability, and felting resistance. The chemical approaches
such as chlorination and oxidation with hydrogen peroxide
and potassium permanganate, ozone, and other chemical treat-
ments can increase adsorption properties and reduce shrinkage
and felting of wool fabrics. Some chemical modifications of
wool, like chlorination with di-chloro-isocyanuric acid
(DCCA) treatment, are effective, but chlorine remains on fiber
and this is not wanted by the consumers.

Enzymatic treatments to reduce wool tendency to
shrink are known for over 60 years (Middlebrook and
Phillips 1941). The amount of disulfide bonding and
previous process history of wool are of paramount im-
portance on the success of protease as an anti-shrinking
agent. It is the view of some authors (Araujo et al.
2009) that anti-felting finishing based on protease is still



Appl Microbiol Biotechnol (2015) 99:10387-10397

10389

(b)

1:Right handed @ -helix 3: Low-S proteins 12
5:High-S proteins High-try proteins  7: Macrofibril &
11: Epicuticle  12: Exocuticle 13: Endocuticle

Esterase/protease activities
——

2 Lefthanded coiled-coil rope 4 Intermediate filament(microfibril)
6:Matrix  8: Nuclear remnant  9: Cell membrane complex
10: Para-cortical cell 14: Meso-contical cell  15: Meso-cortical cell
16: Ortho-cortical cell 17 Cuticle

14 1516 17

Protease activities

Protease activities
1: Microfibril bundles composed of fibril  2: Fibril clearance 3: Crystalregion 4: Noncrystalline domain

S:Fibril 6: Fibril bundles composed of fibroin  7: Fibroin 8: Four-layerof sericin  9: A piece of silk

Fig.2 Fiber scanning electronic micrographs (SEM) and structural schemes showing possible substrate areas for enzyme: a SEM structure of wool (Zou
and Zhang 2007); b structural scheme of wool; ¢ SEM structure of silk (Jin et al. 2013); d structural scheme of silk

the most promising alternative to the chlorination pro-
cess. Other enzymatic applications for wool are detailed
later in this review.

Fig. 3 Schematic diagram of Shorter’s mechanism of wool felting: a
movement towards tip and b movement towards root (Rippon 1992)

Processing of silk

Raw silk fiber contains two structural filaments
consisting of fibroin and sericin. Other minor compo-
nents are waxes, pigments, and mineral components
(Hakimi et al. 2007; Vepari and Kaplan 2007). Sericin
and impurities can be removed during degumming
(Fig. 2). Silk fibroins are reported as biomaterials in
many fields owing to their biocompatibility with mam-
mal cells (Altman et al. 2003).

A conventional chemical degumming process normal-
ly generates plenty of wastewater and causes pollutions
mainly due to the presence of detergents. Sericin waste
is biodegradable, and it is considered as a valuable re-
source for many industries including cosmetics, pharma-
ceutical, and biomedical (Wu et al. 2007). More recent-
ly, numerous studies have been carried out aiming at
optimizing the treatment methods and improving the
performances of the silk products, such as enzymatic
degumming, eco-friendly biomodification of silk, and
developing acceptable methods of sericin recovery from
cocoon cooking and degumming wastewaters. The
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possible uses of enzymes on different parts of silk fibers
are systematically shown in Fig. 2d.

Enzymatic processing of wool

Wool is a very heterogeneous fiber material, and the gender,
feed, age, and climate where the sheep is raised all affect the
fiber characteristics such as the fiber diameter and the amounts
of lipids present on the surface of the epicuticle. Lipids can
prevent the contact of a protease on the surface of the fiber
(Bishop et al. 1998), and therefore, the performance of prote-
ases will depend on the characteristics of wool fiber. Proteases
are known to hydrolyze keratins and would appear ideal for
degrading the cuticle scales on the wool fiber surface leading
to shrink proofing of the wool fiber (Erlacher et al. 2006;
Wang et al. 2010). It was found by many authors that prote-
ases can diffuse inside the wool fibers causing degradation
(Araujo et al. 2009). The ideal enzymatic treatment should
restrain enzyme action at cuticle on the wool surface.

One approach has been reported to enhance the surface
hydrolysis of wool using a protease modified with natural or
synthetic polymers. The modified protease had larger molec-
ular weight and volume. The catalysis of the enlarged protease
molecules could be limited to only the fiber surface, thus re-
ducing wool damage. Higher molecular weight proteases were
obtained by covalently linking them with PEG (Silva et al.
2005; Schroeder et al. 2006; Jus et al. 2007). Other approaches
include attachment to polyacrylic resins and cellulosic deriv-
atives (Cavaco-Paulo and Silva 2002; Silva et al. 2006a; Silva
et al. 2006b; Shen et al. 2007; Smith et al. 2008, 2010).
Figure 4a, b shows the fluorescence microscopy images of
fiber cross sections of wool yarns treated with fluorescein
isothiocyanate (FITC)-labeled commercial-free subtilisin and
linked Eudragit polymer. It is clear that the wool treated with
the modified protease possesses good levels of shrink resis-
tance without considerable damage to the fabric because of
limited degradation to the fiber cuticle cells of wool during
enzymatic treatments. Figure 4c shows the effect of enzyme
treatment with native or modified Esperase (covalently linked
to Eudragit S-100) on scoured wool fabrics with increasing
amounts of enzyme. More native enzyme added to the bath
treatment led to more tensile strength loss of the fabric.
However, this fact was not verified for the fabric treated with
the immobilized form. In all those reports, wool treated with
the enlarged proteases presented good level of shrink resis-
tance with a reduced strength loss. Aratjo et al. (2009) suc-
cessfully constructed novel high molecular weight subtilisin
based on the fusion Bacillus subtilis pro-subtilisin E with an
elastin-like polymer (ELP). The resulting fusion protein was
expressed in Escherichia coli, purified, and used for wool
finishing assays. The recombinant subtilisinE-VPAV G220 ac-
tivity was restricted to the cuticle of wool, thus allowing a
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Fig. 4 Effect of enzyme treatment with native or modified Esperase
(covalently linked to Eudragit S-100) on scoured wool fabrics: a FITC-
labeled commercial free subtilisin; b FITC-labeled subtilisin-linked
Eudragit polymer; ¢ relation between shrinkage and strength with increas-
ing amounts of enzyme (measured as total enzyme units in the bath
treatment) (Silva et al. 2006b)

significant reduction of pilling, weight loss, and tensile
strength loss of wool fibers, while meanwhile imparting wool
shrinkage resistance properties. This was the first report of the
microbial production for controlled enzymatic hydrolysis of
wool surface. The anti-felting mechanism by modified prote-
ase is shown in Fig. 5.

Rippon (1992) further reported the relationship between
the structure of wool and enzymes (Table S2). Figure 2b
shows schematically wool fiber and the possible enzymes
that can modify wool. Zhou et al. (2011) used keratinase from
Bacillus subtilis and protease to treat wool in one bath. The
modified wool reached machine-washable requirement, but
the strength loss was high and the high alkali solubility
(exceeded 15 %) also meant serious damages to wool.
Keratinase is a poorly defined enzyme activity yet to be clar-
ified by experimental evidence.

Laccase has once been reported to be effective in anti-
felting of wool (McDevitt and Winkler 2000). Lantto et al.
(2004) found that Myceliophthora thermophila laccase/
violuric acid (VA) system could degrade cystine and laccase/
1-hydroxybenzotriazole (HBT) system could oxidize tyrosine.

The acceptance of a good wool anti-felting treatment is
always associated with low strength loss. As describe in
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Fig. 5 Mechanism on anti-felting finishing of wool by proteases and modified proteases

Figs. 4 and 5, the best results are achieved with genetic or
chemically modified proteases with larger molecular weight.
Other approaches for anti-felting treatments include the com-
bination of different enzymes, chemical and physical pre-
treatments. A detailed summary of the work done for anti-
felting treatments in the last 15 years is described in Table S3.

Transglutaminases for wool modification

Transglutaminases (EC2.3.1.13), also named protein-
glutamine y-glutamyl transferases, are a family of enzymes
found in many microorganisms, plants, and animal tissues
(Motoki and Seguro 1998; Yokoyama et al. 2004; Strop
2014, McDevitt & Winklet WO 99/60,200).
Transglutaminases catalyze the acyl transfer between the
carboxyamide group of peptide-bound glutamine residues (ac-
yl donors) and a variety of primary amines (acyl acceptors),
including the amino group of lysine residues in certain pro-
teins. In this case, proteins can cross-link via intra- or

inter-¢-(y-glutamyl) lysine isodipeptide bonds once the pri-
mary amine is the amino group of the peptide-bound lysine
as shown in Fig. 6 (Motoki et al. 1998; Strop 2014), increasing
the protein stability and resistance to chemicals and proteases
(Mehta et al. 2002).

Transglutaminases can also be used in protein modification
by the covalent bonding of the compounds containing primary
amines (e.g. cadaverine). If the amine is bi-functional, the
cross-linking of proteins can also occur via N, N’ (y-
glutamyl) polyamine bridges (Cortez et al. 2004). Currently,
transglutaminases have been involved in many applications to
attach proteins and peptides to small molecules, polymers,
surfaces, DNA, and other proteins. The properties of wool
fabrics modified by transglutaminases are summarized in
Table S4. Transglutaminase treatment showed the ability to
recover tensile strength after previous chemical or protease
treatments (Cortez et al. 2005; Cardamone 2007; Du et al.
2007; Gaftar-Hossain et al. 2008; Ge et al. 2009; Zhang
et al. 2010; Montazer et al. 2011, 2012). Other effects include
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Fig. 6 The reactions catalyzed by
transglutaminase including a
cross-linking reaction between
glutamic acid (Glu) and lysine
(Lys) residues of proteins or pep-
tides, b acyl transfer reaction, and
¢ deamidation (Kieliszek and
Misiewicz 2014)

I
(C) R-Glu-C - NH,+H,0

the enhancement of the dyeing properties of wool fabrics (Cui
et al. 2008). Grafting proteins into wool fibers by
transglutaminase can also alter their physical/mechanical
properties. Cortez et al. (2007) investigated
transglutaminase-mediated grafting of silk proteins into wool
and found that it could repair the fiber damage caused in
earlier processing, with increased bursting strength and re-
duced levels of felting shrinkage.

Coloration of wool using redox enzymes

Laccase enzymes have been described as agents for hair col-
oration and can be also applied for dyeing of wool (Fu et al.
2012). It is known that many polymerized phenolic com-
pounds can be obtained with laccases from hydroquinone,
catechol, dopamine, guaiacol, and ferulic acid. Laccases be-
long to the class of multi-copper oxidoreductases that can
catalyze the oxidation of various substrates such as mono-,
di-, and polyphenols; substituted phenols (amino phenols,
methoxyphenols, etc.); aromatic amines; lignin; mercaptan;
and ascorbate (Ryan et al. 2003; Montazer et al. 2009). The
substrate range of laccases can be expanded when a laccase/
mediator system (LMS) is used (Thurston 1994).

Hydroquinone and ferulic acid can be polymerized in pres-
ent laccase or peroxidase and form pigment inside wool (Shin
et al. 2001). The color depth of wool fabrics obtained can be
tunned by the amount of hydroquinone previously added on
the fabric. The mordant processing with chromium com-
pounds helps the fixation of the colored hydroquinone deriv-
atives into the wool fabrics.

Ryan et al. (2003) reported that wool dyeing process can be
performed in a dye solution with a dyeing precursor (2,5-
diaminobenzenesulfonic acid) and dye modifiers (catechol
and resorcinol) and laccase without any dyeing auxiliaries.
Different depths of colors on the fabrics were obtained by
changing the time of laccase treatment and concentration of
the modifiers. The dyeing experiments with catechol and res-
orcinol show that the concentration was not statistically sig-
nificant for the color depth to the catechol but was very sig-
nificant to the resorcinol. To get a deep shade color, catechol
should be used in high concentration while resorcinol should
be used in low concentration. The fabrics dyed with catechol
presented redder and bluer with increasing modifier
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concentration, whereas other fabrics dyed with resorcinol ap-
peared yellower and greener. The position of the second OH
group in the molecule of the modifier affects the coloration
and the hue of samples. Laccase oxidizes the phenolic com-
pounds, converting substrates (catechol and resorcinol) to re-
active quinone species first, then the reactive quinine species
react with amines forming 1,4-Michael-type adducts (shown
in Table 1). The cross section of the enzymatically dyed wool
was observed using a microscope, and it was found that such
colorant can penetrate into the mass of wool fibers.

Munteanu et al. (2006) found that the cyclic voltammetry
had a synergistic effect on wool dyeing when ultrasound was
combined with enzymatic oxidation using laccase and a high
color depth was obtained. Ultrasound enhanced the mass
transport of the charged species near the working electrode,
and a higher amount of ABTS ions was transported to the
wool surface, resulting in deeper wool coloration.

Montazer et al. (2009) explored the effect of laccase on the
physical properties of the wool fabric. It was found that the
wool fabric pretreated with laccase had a higher water absorp-
tion and lower values of a*and b*, thus decreasing the fabric
lightness. It was also shown that the dyeing of laccase-
pretreated wool fabric with madder obtained a lower lightness
because the laccase-treated wool adsorbed more water-soluble
dye in the bath. It means that the laccase pre-treatment is valid
for fabric coloration in the case of madder. The properties of
wool fabric dyed with redox enzymes are shown in Table 1.

Enzymatic processing of silk

The conventional degumming of silk fibers is carried out with
soap and alkali at 95 °C and pH 9-10, which can achieve the
complete removal of sericin. However, the harsh condition
such as high temperature and alkalinity will partially damage
the silk fibroins and result in a decrease in fiber strength,
which is considered as the main disadvantage of the conven-
tional degumming of silk (Arami et al. 2007). As an alterna-
tive approach, enzymatic degumming of silk using proteases
offers the advantages of minimum fiber damage, has less con-
sumption of energy, and is environmentally benign. Table S5
summarizes the properties of silk fabrics after enzymatic and
conventional degumming.
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Table 1

Coloration of wool with redox enzymes

Phenolic The structure of phenolic
Enzyme Reactions and results Reference
substrate substrate
i
. Hi
a.  Hydroquin ;5 m“
one a OH; bH ’
Colour depth of wool fabrics changed depended on
horseradish  b.  Dopamine _ClH; o
% the amount of substrate. Mordant processing with ~ Shin et al
peroxidase  c¢.  Guaiacol Ol o
q chromium compounds helped the fixation of the (2001)
orlaccase d.  Catechol ¢ ;
phenolic substrate.
e.  Ferulic -
./ |
Acid AN i
e OH
Laccase oxidizes the phenolic compounds, converting
catechol and resorcinol to quinone species, then the
quinones species react with amines forming 1,
H
H 4-Michael-type adducts. The
f.  catechol orthosubstituteddiphenol-catechol further reacts with Ryan et al.
laccase
g.  resorcinol - H another amine and receives deeper color. (2003)
SO3H OH
O S A
@ch Laccase HN |NH
O
NH,
h.  2,2’-Azino h Coupling the ultrasound with cyclic voltammetry will
bis(3-ethyl S lead to a better dyeing of the wool due to the fact that
benzothiaz /K‘\I_NW}N in the presence of an ultrasound the formed ABTS?*  Munteanu
laccase
oline-6-sul k S@\()' species will be transported much faster from the etal (2006)
g
fonate NH, N, electrode surface to the wool. Therefore, a higher
acid) color depth is obtained.
Wool fabric pre-treated with laccase had a higher
water absorption and lower values of a* and b*. Montazer et
laccase — —
Laccase-treated wool could adsorb more water soluble  al. (2009)
dye in the bath, thus the fabric lightness reduced.
i 2,5-diamin
SO3H JolantaPola
laccase obenzenes NH, Laccase catalyse oxidation of phenolic compounds to
k et
ulfonic ity synthesize colour products.
al(2012)
acid
Laccase and peroxidises are able to catalyse the
j. Phenol
Laccaseor transformation of phenol derivatives through an  Gianfreda
derivative —
peroxidises oxidative coupling reaction, forming dye polymer etal (2003)
N
compounds.
oH Tyrosinasescatalyse both the ortho-hydroxylation of
k. o-diphenol Mayer et
tyrosinase monophenols and the two-electron oxidation of
s al(2002)
k 1 o-diphenols to o-quinones.
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Fig. 7 Tyrosinase-initiated
conjugation of GFP with chitosan
(Chen et al. 2003)

Chitosan  GFP

Initial Solution (A)

Freddi et al. (2003) investigated the effects of neutral pro-
teases on the degumming of silk fabrics and reported that the
degumming efficacy was highly dependent on the enzyme
dosages and incubation time. As a consequence of complete
sericin removal, the quality of the protease-treated silk in
terms of handle and tensile properties could be noticeably
increased due to the lower extent of chemical and physical
stresses to which silk was subjected during enzymatic process-
ing compared to the traditional chemical process. Other spot
reports on silk degumming mention the combination of lipase
and proteases (Gulrajani et al. 2000). Mahmoodi et al. (2010)
mention the use of ultrasound to enhance the enzymatic
degumming.

Biofunctionalization of silk and fibroin-based products
using tyrosinase

Tyrosinases (EC 1.14.18.1) known as polyphenol oxidases are
copper-containing enzymes widely distributed in all domains
of life including animals, plants, and microorganisms (Xing
etal. 2015). They are bi-functional enzymes that catalyze both
the hydroxylation of monophenols to o-diphenols and the
subsequent oxidation of the diphenols to o-quinones (Yi
etal. 2011). On the one hand, the quinones can spontaneously
polymerize to form melanins or high molecular weight com-
pounds. On the other hand, active quinones can also react with
amines, amino acids, peptides, and proteins, affording not
only new functional materials but also the functional modifi-
cation of tyrosine-containing protein materials. For instance,
several researchers investigated the feasibility of tyrosinase
for the modification of proteins such as gelatine, casein, and
sericin (Aberg et al. 2004; Anghileri et al. 2007; Chen et al.
2001, 2002;). A scheme for the tyrosinase linkage and isola-
tion of soluble protein (like GFP) and chitosan is presented in
Fig. 7 (Chen et al. 2003). The formation of o-quinones was the
determining step of the grafting reaction (Chen et al. 2003;
Sampaio et al. 2005). Tyrosinase can modify the tyrosine res-
idues of fibroin proteins and introduce a wide variety of func-
tional groups into silk fibers (Freddi et al. 2006) linking silk
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fibroin with chitosan. Table S6 shows the properties of
biofunctionalization of silk using tyrosinase.

Kang et al. (2004a) also indicated that tyrosinase can oxi-
dize the tyrosyl residues in silk fibroin with oxygen, resulting
in the production of o-quinone residues which will react with
amino groups to form the inter- or intramolecular crosslinks
through the nonenzymatic process as shown in Fig. 8. Based
on this evidence, they further revealed that the cross-linking
between silk fibroin and chitosan occurred mainly through
Michael addition reactions (Kang et al. 2004b). A main reac-
tion between the amino groups in chitosan and o-quinone
which was the oxidation product of the tyrosyl residue in silk
fibroin was confirmed by UV spectroscopy (Gyung et al.
2004). The cross-linked SF/chitosan conjugate had a small
particle size because of tight and strong bonding forces be-
tween the SF and chitosan molecular chains.

Tyrosinase-mediated cross-linking between silk fibroin and
chitosan can be used not only in biomedical applications due
to their unique properties and nontoxicity of conjugate but
also in the functional modification of silk fibers. Wang et al.
(2014) analyzed the impacts of the tyrosinase on the structure

OH
Tyrosmase Tyr05| nase

CHay
SF s|= SF
2 Z \OCHZOH *
H2
\ CHZOH
; Nonenzymatic /1
Michael addition reaction reaction ijo
H NH,

! _SF
CH, /
CH,OH H Chitosan unit
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H
Maillard reaction (Schiff base)

Fig. 8 Silk fibroin/chitosan conjugate cross-linked by tyrosinase (Kang
et al. 2004a; Kang et al. 2004b)
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Fig. 9 Tyrosinase-catalyzed OH - |o o
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(Taddei et al. 2013; Wang et al. | TYR | _ |
2014) \[ N Chitosan 1 + % -HN
G it Q CHa § GHa
—C—CH—-NH— —C—CH—-NH— —C—CH-NH— —(C—CH-NH-
Silk fibroin Oxidized silk fibroin Silk-Chitosan conjugate

of silk fibroin and the efficacy of the tyrosinase-catalyzed
grafting of chitosan onto silk fibers. The result indicates that
chitosan could be adsorbed on silk fibers via electrostatic in-
teractions and other weak forces. Meanwhile, the amine
groups of chitosan might react with the o-quinone residues
oxidized from the tyrosyl residues of silk fibers. For the silk
fabric treated with tyrosinase and chitosan, the strength and
crease-resistant ability simultaneously improved owing to the
covalent grafting of chitosan as well as the electrostatic forces
between chitosan and silk fibroin. In addition, the efficacy
of the graft reaction was also related with the accessi-
bilities of tyrosinase and chitosan to the potential
grafting sites in silk fibers.

The simultaneous coloration and functionalization
(deodorizing ability, UV protection capacity, antioxidant ac-
tivity, and hydrophilicity) of silk, wool, and nylon fabrics with
the tyrosinase-catalyzed oxidation products of phenol (caffeic
acid) were investigated, and the results showed that
tyrosinase-catalyzed caffeic acid products can be used as po-
tential colorants and functional finishes (Sun et al. 2013). In
addition, the potential for using tyrosinase to graft the bovine
lactoferrin onto Bombyx mori silk fibroin and gelatin was also
examined based on the similar mechanism shown in Fig. 9
(Taddei et al. 2013; Wang et al. 2014). With regard to other
polyphenol oxidase for silk modification, Guo et al. (2013)
investigated the structure and properties of e-polylysine-
grafted silk fibers catalyzed by laccase. The wet wrinkle resis-
tance of the modified silk fabrics was also noticeably
improved.

Sericin has been discarded as a waste for many years, si-
multaneously causing environmental pollution in silk indus-
try. Actually, the sericin from the degumming process can be
applied in many fields such as cosmetics, biomaterials, and
textiles (Zhang et al. 2004). Many works on the recycling and
reutilization of sericin from degumming wastewater have
been undertaken since the last century (Yamada and Nomura
1998; Capar et al. 2008; Vaithanomsat and Kitpreechavanich
2008).

Agaricus bisporus tyrosinase was proved to catalyze the
oxidation of 57 % tyrosine residues of silk sericin purified
from industrial wastewater under homogeneous reaction con-
ditions. Oxidized sericin peptides could undergo nonenzymat-
ic coupling with chitosan under homogeneous reaction condi-
tions, as demonstrated by infrared spectroscopy (Anghileri
etal. 2007). Wu et al. (2008) obtained bioactive peptides from

the sericin recovered from silk industry wastewater by using a
protease. This study firstly established an effective biological
method to produce sericin bioactive peptides, showing their
potential as valuable ingredients in the food, cosmetic, and
medicine industries.

Conclusion and future outlook

The potential of enzyme-based modification of protein-
based fibers is here reviewed. Proteases, in particular,
have been applied in wool processing to impart shrink
resistance and to silk degumming. Transglutaminases
have a wide application in remediating damage of wool,
antibacterial finishing, hydrophilic finishing, and color
fixing in dyeing. Laccases show a great potential for
wool and hair coloration. Tyrosinases can be valuable
for silk modification and functionalization. All the
abovementioned enzymatic processes offer great advan-
tages over the traditional treatments due to their selec-
tivity, specificity, and mild treatment conditions as well
as nontoxic and environmentally friendly characters. The
majority of these enzyme treatments were carried out on
a lab scale. Future work needs to put emphasis on the
know-how of enzymatic modification of protein-based
fibers and focus on the tailoring of enzyme and process-
ing routes for industrialization. New possibilities are
open for application of biomodified silk and wool ma-
terials for cosmetic and pharma applications.
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