190 research outputs found

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Ribozyme-based insulator parts buffer synthetic circuits from genetic context

    Get PDF
    Synthetic genetic programs are built from circuits that integrate sensors and implement temporal control of gene expression. Transcriptional circuits are layered by using promoters to carry the signal between circuits. In other words, the output promoter of one circuit serves as the input promoter to the next. Thus, connecting circuits requires physically connecting a promoter to the next circuit. We show that the sequence at the junction between the input promoter and circuit can affect the input-output response (transfer function) of the circuit. A library of putative sequences that might reduce (or buffer) such context effects, which we refer to as 'insulator parts', is screened in Escherichia coli. We find that ribozymes that cleave the 5′ untranslated region (5′-UTR) of the mRNA are effective insulators. They generate quantitatively identical transfer functions, irrespective of the identity of the input promoter. When these insulators are used to join synthetic gene circuits, the behavior of layered circuits can be predicted using a mathematical model. The inclusion of insulators will be critical in reliably permuting circuits to build different programs.Life Technologies, Inc.United States. Defense Advanced Research Projects Agency (DARPA CLIO N66001-12-C-4018)United States. Office of Naval Research (N00014-10-1-0245)National Science Foundation (U.S.) (CCF-0943385)National Institutes of Health (U.S.) (AI067699)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (SynBERC, SA5284-11210

    Does Jacobson's relaxation technique reduce consumption of psychotropic and analgesic drugsin cancer patients? A multicenter pre-post intervention study

    Get PDF
    Background: Cancer patients often suffer from emotional distress as a result of the oncological process. The purpose of our study was to determine whether practice of Jacobson?s relaxation technique reduced consumption of psychotropic and analgesic drugs in a sample of cancer patients. Methods: This was a multicenter pre?post intervention design. Participants were 272 patients aged over 18 years attending 10 Spanish public hospitals with oncological pathologies and anxiety symptoms. The intervention consisted of a protocol of abbreviated progressive muscle relaxation training developed by Bernstein and Borkovec. This was followed up by telephone calls over a 1-month period. The intervention was performed between November 2014 and October 2015. Sociodemographic variables related to the oncological process, mental health variables, and intervention characteristics were measured. Results: A reduction in the consumption of psychotropic and analgesic drugs was observed throughout the follow-up period. Improvement was observed throughout the 4-week follow-up for all the parameters assessed: anxiety, relaxation, concentration, and mastery of the relaxation technique. Conclusions: The practice of abbreviated Jacobson?s relaxation technique can help to decrease the consumption of psychotropic and analgesic drugs. Patients experienced positive changes in all the evaluated parameters, at least during the 1-month follow-up. To confirm these findings, additional long-term studies are needed that include control groups. Trial registration: ISRCTN 81335752, DOI 10.1186/ISRCTN81335752 17. Date of registration: 22/11/2016 (retrospectively registered)

    Computational approaches for modeling human intestinal absorption and permeability

    Get PDF
    Human intestinal absorption (HIA) is an important roadblock in the formulation of new drug substances. Computational models are needed for the rapid estimation of this property. The measurements are determined via in vivo experiments or in vitro permeability studies. We present several computational models that are able to predict the absorption of drugs by the human intestine and the permeability through human Caco-2 cells. The training and prediction sets were derived from literature sources and carefully examined to eliminate compounds that are actively transported. We compare our results to models derived by other methods and find that the statistical quality is similar. We believe that models derived from both sources of experimental data would provide greater consistency in predictions. The performance of several QSPR models that we investigated to predict outside the training set for either experimental property clearly indicates that caution should be exercised while applying any of the models for quantitative predictions. However, we are able to show that the qualitative predictions can be obtained with close to a 70% success rate

    The influence of solid state information and descriptor selection on statistical models of temperature dependent aqueous solubility.

    Get PDF
    Predicting the equilibrium solubility of organic, crystalline materials at all relevant temperatures is crucial to the digital design of manufacturing unit operations in the chemical industries. The work reported in our current publication builds upon the limited number of recently published quantitative structure-property relationship studies which modelled the temperature dependence of aqueous solubility. One set of models was built to directly predict temperature dependent solubility, including for materials with no solubility data at any temperature. We propose that a modified cross-validation protocol is required to evaluate these models. Another set of models was built to predict the related enthalpy of solution term, which can be used to estimate solubility at one temperature based upon solubility data for the same material at another temperature. We investigated whether various kinds of solid state descriptors improved the models obtained with a variety of molecular descriptor combinations: lattice energies or 3D descriptors calculated from crystal structures or melting point data. We found that none of these greatly improved the best direct predictions of temperature dependent solubility or the related enthalpy of solution endpoint. This finding is surprising because the importance of the solid state contribution to both endpoints is clear. We suggest our findings may, in part, reflect limitations in the descriptors calculated from crystal structures and, more generally, the limited availability of polymorph specific data. We present curated temperature dependent solubility and enthalpy of solution datasets, integrated with molecular and crystal structures, for future investigations

    Standard versus prosocial online support groups for distressed breast cancer survivors: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Internet can increase access to psychosocial care for breast cancer survivors through online support groups. This study will test a novel prosocial online group that emphasizes both opportunities for getting and giving help. Based on the helper therapy principle, it is hypothesized that the addition of structured helping opportunities and coaching on how to help others online will increase the psychological benefits of a standard online group.</p> <p>Methods/Design</p> <p>A two-armed randomized controlled trial with pretest and posttest. Non-metastatic breast cancer survivors with elevated psychological distress will be randomized to either a standard facilitated online group or to a prosocial facilitated online group, which combines online exchanges of support with structured helping opportunities (blogging, breast cancer outreach) and coaching on how best to give support to others. Validated and reliable measures will be administered to women approximately one month before and after the interventions. Self-esteem, positive affect, and sense of belonging will be tested as potential mediators of the primary outcomes of depressive/anxious symptoms and sense of purpose in life.</p> <p>Discussion</p> <p>This study will test an innovative approach to maximizing the psychological benefits of cancer online support groups. The theory-based prosocial online support group intervention model is sustainable, because it can be implemented by private non-profit or other organizations, such as cancer centers, which mostly offer face-to-face support groups with limited patient reach.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01396174">NCT01396174</a></p

    Positional Cloning of “Lisch-like”, a Candidate Modifier of Susceptibility to Type 2 Diabetes in Mice

    Get PDF
    In 404 Lepob/ob F2 progeny of a C57BL/6J (B6) x DBA/2J (DBA) intercross, we mapped a DBA-related quantitative trait locus (QTL) to distal Chr1 at 169.6 Mb, centered about D1Mit110, for diabetes-related phenotypes that included blood glucose, HbA1c, and pancreatic islet histology. The interval was refined to 1.8 Mb in a series of B6.DBA congenic/subcongenic lines also segregating for Lepob. The phenotypes of B6.DBA congenic mice include reduced β-cell replication rates accompanied by reduced β-cell mass, reduced insulin/glucose ratio in blood, reduced glucose tolerance, and persistent mild hypoinsulinemic hyperglycemia. Nucleotide sequence and expression analysis of 14 genes in this interval identified a predicted gene that we have designated “Lisch-like” (Ll) as the most likely candidate. The gene spans 62.7 kb on Chr1qH2.3, encoding a 10-exon, 646–amino acid polypeptide, homologous to Lsr on Chr7qB1 and to Ildr1 on Chr16qB3. The largest isoform of Ll is predicted to be a transmembrane molecule with an immunoglobulin-like extracellular domain and a serine/threonine-rich intracellular domain that contains a 14-3-3 binding domain. Morpholino knockdown of the zebrafish paralog of Ll resulted in a generalized delay in endodermal development in the gut region and dispersion of insulin-positive cells. Mice segregating for an ENU-induced null allele of Ll have phenotypes comparable to the B.D congenic lines. The human ortholog, C1orf32, is in the middle of a 30-Mb region of Chr1q23-25 that has been repeatedly associated with type 2 diabetes

    Atrioventricular and interventricular delay optimization in cardiac resynchronization therapy: physiological principles and overview of available methods

    Get PDF
    In this review, the physiological rationale for atrioventricular and interventricular delay optimization of cardiac resynchronization therapy is discussed including the influence of exercise and long-term cardiac resynchronization therapy. The broad spectrum of both invasive and non-invasive optimization methods is reviewed with critical appraisal of the literature. Although the spectrum of both invasive and non-invasive optimization methods is broad, no single method can be recommend for standard practice as large-scale studies using hard endpoints are lacking. Current efforts mainly investigate optimization during resting conditions; however, there is a need to develop automated algorithms to implement dynamic optimization in order to adapt to physiological alterations during exercise and after anatomical remodeling
    corecore