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Abstract 

Predicting the equilibrium solubility of organic, crystalline materials at all relevant temperatures is crucial to the digital 
design of manufacturing unit operations in the chemical industries. The work reported in our current publication 
builds upon the limited number of recently published quantitative structure–property relationship studies which 
modelled the temperature dependence of aqueous solubility. One set of models was built to directly predict temper-
ature dependent solubility, including for materials with no solubility data at any temperature. We propose that a mod-
ified cross-validation protocol is required to evaluate these models. Another set of models was built to predict the 
related enthalpy of solution term, which can be used to estimate solubility at one temperature based upon solubility 
data for the same material at another temperature. We investigated whether various kinds of solid state descriptors 
improved the models obtained with a variety of molecular descriptor combinations: lattice energies or 3D descriptors 
calculated from crystal structures or melting point data. We found that none of these greatly improved the best direct 
predictions of temperature dependent solubility or the related enthalpy of solution endpoint. This finding is surpris-
ing because the importance of the solid state contribution to both endpoints is clear. We suggest our findings may, in 
part, reflect limitations in the descriptors calculated from crystal structures and, more generally, the limited availability 
of polymorph specific data. We present curated temperature dependent solubility and enthalpy of solution datasets, 
integrated with molecular and crystal structures, for future investigations.
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Introduction
A plethora of computational approaches currently exist 
to predict the equilibrium solubility of organic chemicals, 
as well as related thermodynamic terms such as the free 
energy of solvation [1]. These approaches include data 
driven statistical modelling approaches, such as quantita-
tive structure–property relationships (QSPRs), as well as 
various kinds of physics based models. The focus of much 
of this work is on the prediction of aqueous solubility at 
a single temperature, or a nominal single value around 
typical ambient temperatures, to support estimation of 

product performance, e.g. in terms of the bioavailability 
of active pharmaceutical ingredients (APIs) or the envi-
ronmental fate of pollutants [1–3].

In contrast, we are interested in predicting the temper-
ature dependence of equilibrium solubility. Predictions 
of the solubility of relevant organic crystalline materials, 
in all relevant solvents, across a range of temperatures 
are crucial for digital design of unit operations in phar-
maceutical manufacturing. For example, they could sup-
port the design of cooling crystallization operations [4]. 
Determination of aqueous solubility at elevated tempera-
tures may also be relevant to the design of wet granula-
tion processes [5, 6].

It is important to note that various kinds of physics 
based approaches to modelling solution thermodynamics 
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are capable of capturing temperature dependence, 
including in complex mixtures [1, 7–9]. If combined 
with estimations of solid state thermodynamic contribu-
tions, these might be applied to predict the temperature 
dependence of solubility [10–13].

However, physics based models are not necessar-
ily more accurate and may be more computationally 
expensive than QSPR approaches [1, 14]. Interestingly, 
however, few QSPR models have been developed to cap-
ture the temperature dependence of solubility. Some 
QSPR models were reported to predict the solubilities 
of organic chemicals, across a range of temperatures, in 
supercritical carbon dioxide for small (less than 30 chem-
icals), non-diverse datasets [15, 16]. More recently, two 
QSPR studies sought to capture the temperature depend-
ence of aqueous solubility for large, chemically diverse 
datasets [14, 17].

Specifically, Avdeef [17] developed QSPR models for 
the standard enthalpy of solution, for the unionized sol-
ute, in water. Under certain assumptions, the variation in 
solubility with temperature may be expressed in terms of 
the van’t Hoff relationship in Eq. (1), where S is the solu-
bility (in molar concentration units), T is the temperature 
(in Kelvin), R is the molar gas constant and �H0

sol is the 
standard enthalpy of solution [17–20]. If it is assumed 
that the standard enthalpy of solution is effectively con-
stant over the temperature range of interest, Eq.  (1) can 
be used to interpolate solubility values between tempera-
tures or extrapolate solubility data from one temperature 
to another [17].

The models for the enthalpy of solution developed by 
Avdeef [17] were based on different combinations of 
molecular descriptors and melting point values and built 
using multiple linear regression (MLR) [21], recursive 
partition tree [22] and random forest [23, 24]. The melt-
ing points were measured or predicted from a molecular 
descriptors based model [25].

In contrast, Klimenko et  al. [14] built a model for 
directly predicting aqueous solubility at a specified tem-
perature. Their predictions were based on molecular 
descriptors and a descriptor derived from experimental 
temperature, with random forest used to train the model.

In the work reported in our current article, we 
extended the work of Avdeef [17] and Klimenko et  al. 
[14] as follows. Firstly, we investigated the effect of 
incorporating crystallographic information, in the form 
of lattice energies or 3D descriptors calculated from an 
experimental crystal structure, into the models. Sec-
ondly, we compared models for the enthalpy of solution 

(1)log10 S =
−�H0

sol

ln (10)RT
+ constant

based on molecular descriptors with or without melting 
point values and examined the effect of including melt-
ing point values into direct predictions of temperature 
dependent solubility. In both respects, this means our 
work is a contribution to the wider debate in the recent 
literature regarding the importance of explicitly captur-
ing solid state contributions in QSPR models of solubil-
ity and whether the availability of crystallographic or 
melting point information is essential to achieve this [3, 
26–30]. Indeed, it has recently been suggested that the 
major source of error in QSPR prediction of solubility is 
the failure of molecular descriptors to fully capture solid 
state contributions [28]. Thirdly, we considered a larger 
variety of molecular descriptor permutations, with or 
without the explicit solid state contribution descriptors, 
including the application of a feature selection algorithm 
to produce parsimonious models from high dimensional 
descriptor sets. Finally, we introduced a novel pseudo-
cross-validation protocol for evaluating direct models of 
temperature dependent solubility. This novel validation 
protocol allowed us to investigate potential optimistic 
bias when validating those models.

Methods and data
For brevity, the essential points are provided below and 
further details are provided, under corresponding sub-
headings, in Additional file 1.

Solubility data curation
Electronic datasets were curated for two endpoints 
related to temperature dependent solubility: enthalpy of 
solution values and temperature specific solubility values. 
Enthalpy of solution data (in kJ/mol) were curated from 
the publication of Avdeef [17] and temperature depend-
ent solubility data (log10[molar concentration]) were 
curated from the publication of Klimenko et al. [14].

Avdeef [17] reported enthalpy of solution values 
derived from temperature dependent intrinsic solubility 
values via van’t Hoff analysis. (Intrinsic solubility refers to 
the solubility of the unionized solute [1]. Avdeef [17] esti-
mated the intrinsic solubility values from experimental 
values reported in various literature studies.) Avdeef also 
presented curated enthalpy of solution values obtained 
from direct calorimetric measurements, which were 
considered more reliable [17]. Here, it has been assumed 
that all curated enthalpy of solution values closely corre-
sponded to the standard enthalpy of solution, such that 
they could be used via Eq. (1) to interpolate or extrapo-
late intrinsic solubility data between temperatures.

As well as curating the endpoint values, we curated 
the corresponding metadata, including chemical names 
(or CAS numbers) identifying the molecular species 
and corresponding polymorph metadata, where this was 
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reported. This included curating the data quality assess-
ments made by Avdeef [17]. An overview of this curation 
process is provided in Fig. 1.

It should be noted that the “Avdeef (2015) derived data-
set” and “Klimenko et  al. (2016) derived dataset” labels 
(Fig. 1) refer to the datasets curated in this work into the 
electronic template, starting from the work of Avdeef 
[17] and Klimenko et  al. respectively [14], where differ-
ences in the datasets arose during the curation process. 
One key difference between our versions of these data-
sets and those reported in these earlier studies is that we 
filtered dataset entries where there was no evidence that 
the enthalpy of solution or solubility data corresponded 
to dissolution from the solid state.

Integration with molecular structures
In the first instance, SMILES representations of molecu-
lar structures were retrieved via querying the following 
online resources: the Chemical Identifier Resolver service 
[31], ChemSpider [32] and PubChem [33, 34]. For those 
scenarios where no, or inconsistent, molecular structures 
were retrieved, other references were consulted to deter-
mine the molecular structures.

Integration with crystal structures
Where possible, Cambridge Structural Database (CSD) 
refcodes were obtained for each combination of molec-
ular structure identifier and polymorph description (i.e. 
each material), each refcode denoting a crystal struc-
ture [35]. Only a small proportion (< 3%) of solubility or 
enthalpy of solution data points were associated with a 
description of the corresponding polymorphic form in 
the Klimenko et  al. [14]. or Avdeef [17] derived data-
sets respectively, i.e. the polymorph description was 
typically blank. Hence, in the majority of cases, only a 
possible match could be determined based upon cross-
referencing the molecular identifiers (names and CAS 
numbers) and molecular structures associated with 
the data points against the CSD. Nonetheless, where 
polymorph information was available in the dataset and 
CSD for provisional matches, conflicting polymorph 
descriptions were manually identified and the corre-
sponding matches deleted. In keeping with literature 
precedence, all multiple matches remaining were fil-
tered to only keep the putative lowest energy structure, 
based upon calculated lattice energy [29, 30].

Fig. 1  An overview of the curation of endpoint data and associated metadata for endpoints related to temperature dependent aqueous solubility 
which was carried out for our article. These endpoints were the enthalpy of solution and temperature specific solubility measurements for datasets 
curated starting from the work of Avdeef [17] and Klimenko et al. [14] respectively. The descriptions on the right hand side of this image refer to 
the curated datasets we prepared, starting from the information reported in these earlier studies and based on cross-referencing against other 
references where necessary, from which datasets for QSPR modelling were derived. Full details of the curation process, including explanations of 
how these curated datasets differed from those reported in the literature, are provided in Additional file 1. See the sections “Solubility data curation” 
and “Comparison to the literature” therein
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Calculation of lattice energies
Lattice energies were calculated from the available crystal 
structures, using the COMPASS force field [36–38], and 
used as a descriptor of solid state contribution to the mod-
elled endpoints. This is justified by the fact that solubility 
can be related to the standard Gibbs free energy change, 
comprising enthalpic and entropic contributions, upon 
moving from the solid state to the solution phase [1, 4]. In 
turn, this may be decomposed into the free energy change 
of sublimation (breaking of the crystal lattice to form a 
gaseous phase) and solvation (transfer from the gas phase 
to the solution phase), i.e. hydration in the case of an aque-
ous solution [1, 26, 29]. Hence, the enthalpy of solution 
may be decomposed into the sublimation enthalpy and the 
solvation enthalpy. The lattice energy is a contribution to 
the sublimation enthalpy. It is defined as the energy change 
upon forming the crystal lattice from infinitely separated 
gas phase molecules [29]. Under certain assumptions, 
the enthalpy of sublimation may be related to the lattice 
energy as per Eq. (2) [29]. In Eq. (2), �Hsub represents the 
enthalpy of sublimation, Elatt the lattice energy, R the gas 
constant and T  the temperature in Kelvin.

Validation of lattice energies
The calculated lattice energies were compared to the 
experimental estimates of lattice energies, obtained from 
experimental sublimation enthalpies via Eq.  (2) and 
assuming a constant temperature of 298 Kelvin, for a 
subset of the SUB-48 dataset from McDonagh et al. [29]. 
(See “Filtering of SUB-48 Dataset” in Additional file 1.) In 
keeping with the solubility and enthalpy of solution data-
sets, this dataset also comprised a set of single component 
crystals, was a mixture of general organic and pharmaceu-
tical API small molecules and was filtered in keeping with 
the crystal structure selection criteria applied when inte-
grating the QSPR datasets with crystal structures.

Preparation of molecular structures for descriptor 
calculations
Prior to calculating 2D molecular descriptors, all molecu-
lar structures were standardized and filtered. Prior to cal-
culating 3D molecular descriptors, from the conformer 
generator structure but not the crystal structure, similar 
standardization was applied to the structures retained 
for the QSPR ready datasets, yet stereochemistry was 
retained prior to conformer generation.

Calculation of 2D molecular descriptors
The choice of 2D molecular descriptors was based upon 
the different permutations considered by Klimenko et al. 
[14] and Avdeef [17]. Where possible, we sought to calcu-
late the same subsets of descriptors as per these previous 

(2)�Hsub = −Elatt − 2RT

studies, and to consider the same combinations of these 
subsets, as well as the combined pool of all molecular 
descriptors. Each of the different subsets is denoted by 
a label explained in Additional file  1: Table  S1 and the 
combinations of 2D molecular descriptors evaluated are 
enumerated, therein, using these labels. These labels are 
also used in the file names of the versions of the QSPR 
ready datasets (see Table 1) provided in Additional File 2,  
to denote the 2D molecular descriptors incorporated into 
the applicable combination of the available descriptors.

Calculation of crystal structure based 3D molecular 
descriptors
In addition to employing calculated lattice energies as a 
descriptor, the value of crystallographic information was 
evaluated via computing 3D molecular descriptors from 
the molecular structure found in the crystal. Specifically, 
charged partial surface area (CPSA) descriptors, repre-
senting the charge distribution at the molecular surface 
[39–41], were calculated using Mordred [42, 43]. These 
may partially capture intermolecular interactions in the 
solid state. Whereas the calculated lattice energies and 
experimental melting point data explicitly convey infor-
mation about the solid state contribution, these descrip-
tors may—in part—implicitly represent this information. 
However, if the solution state structures are not wholly dif-
ferent, they might partially capture molecular interactions 
associated with non-solid state contributions. Moreover, 
these descriptors may also be calculated for 3D molecular 
structures estimated from the available molecular infor-
mation. Hence, in order to assess whether these descrip-
tors added value due to their having been computed from 
the crystal structure, corresponding models were built 
using CPSA descriptors calculated from the 3D molecu-
lar structure derived from the originally curated SMILES 
using the ETKDG conformer generator algorithm [44, 
45] and UFF force-field [46] geometry refinement. These 
descriptors were only calculated for those dataset entries 
which could be integrated with crystal structures.

Temperature descriptor
For a given material, assuming the standard enthalpy of 
solution may be approximated as a constant over the rel-
evant temperature range, as well as other assumptions, 
the logarithm of solubility may be linearly related to (1/T), 
where T is the temperature in Kelvin [c.f. Eq. (1)] [17–20]. 
Hence, as temperature dependent solubility in log10[molar 
concentration] units was modelled for the Klimenko et al. 
[14]. derived dataset, the experimental temperature values 
were transformed to (1/T) to use as a descriptor. N.B. It 
should be noted that Klimenko et al. [14] proposed a more 
complicated temperature descriptor. However, for sim-
plicity, and due to the grounding of the (1/T) dependence, 
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under certain assumptions [17–20], in fundamental ther-
modynamics, we chose to use (1/T) as the descriptor.

Melting point descriptor
Experimental melting point data were used as a descrip-
tor for all datasets. The data retrieved do not necessarily 
correspond to the polymorph for which enthalpy of solu-
tion or solubility data were modelled.

QSPR ready datasets
Table 1 summarizes the QSPR ready datasets which were 
used for the evaluation of modelling approaches investi-
gated in our work. A summary of the derivation of these 
QSPR ready datasets is provided in Fig. 2. These datasets 
were derived from the curated datasets summarized in 
Fig.  1, following integration with structural informa-
tion, standardizing molecular structures, and calculating 
descriptors. For the enthalpy of solution datasets, data 
points noted to be low quality by Avdeef [17] were also 
filtered. The derived dataset matched instance IDs to an 
endpoint value and a vector of descriptors.

The instances in these datasets, i.e. the unique identi-
fiers associated with endpoint values and corresponding 
descriptor vectors used for modelling, represent differ-
ent organic crystalline materials, typically corresponding 
to different molecular chemicals, and—for the Klimenko 

et  al. [14] derived QSPR datasets—different tempera-
tures. Where multiple endpoint data points were associ-
ated with a given instance identifier, the arithmetic mean 
endpoint value was assigned. Hence, each instance iden-
tifier only occurred once.

Descriptor combinations investigated
For the QSPR ready datasets which were not inte-
grated with crystallographic information, all previously 
described combinations of 2D molecular descriptors 
were considered, with or without the melting point 
descriptor and in combination with the temperature 
descriptor for the Klimenko et  al. [14] derived datasets. 
For the QSPR ready datasets integrated with crystallo-
graphic information, the same combinations of descrip-
tors were considered, with or without the calculated 
lattice energy. In addition, a new set of descriptor combi-
nations were evaluated for these datasets based upon the 
3D descriptors calculated from the corresponding crystal 
structure, or the conformer generator structure. These 
descriptor combinations were obtained via adding the 3D 
descriptors, to all descriptor combinations involving the 
combined set of 2D molecular descriptors, or substitut-
ing the combined set of 2D molecular descriptors for the 
3D descriptors. Finally, for the high dimensional descrip-
tor combinations containing the complete set of 2D 

Table 1  QSPR ready datasets

a  The [name] (or [CAS no.]) and/or [polymorph description] could be “none”, denoting the absence of the relevant information
b  This denotes the complete set of all 2D molecular, temperature (for the solubility datasets), melting point and, for crystal structure integrated datasets, lattice 
energy and 3D descriptors calculated for instances in this dataset. Different subsets were considered for different models, as described under “Descriptor 
combinations investigated”
c  See Fig. 1

Dataset name Instance 
identifiera

Extra filtering? No. instances Total no. 
descriptorsb

Endpoint Sourcec Integrated 
with crystal 
structures?

Avdeef_ExDPs_
CS_False

[name]_[CAS 
no.]_[polymorph 
description]

Low quality data 
points removed 
[17]

364 4776 Enthalpy of solu-
tion

Avdeef [17] 
derived dataset

No

Avdeef_ExDPs_
Cal_CS_False

[name]_[CAS 
no.]_[polymorph 
description]

Only calorim-
etry data points 
retained [17]

50 4776

Klimenko_CS_
False

[name]_[CAS 
no.]_[polymorph 
description]_
[temperature 
value]

No 882 3764 Solubility at some 
defined tem-
perature

Klimenko et al. 
[14] derived 
dataset

Avdeef_ExDPs_
CS_True

[name]_[CAS 
no.]_[refcode]

Low quality data 
points removed 
[17]

169 4820 Enthalpy of solu-
tion

Avdeef [17] 
derived dataset

Yes

Avdeef_ExDPs_
Cal_CS_True

[name]_[CAS 
no.]_[refcode]

Only calorim-
etry data points 
retained [17]

30 4820

Klimenko_CS_True [name]_[CAS no.]_
[refcode]_[tem-
perature value]

No 530 3808 Solubility at some 
defined tem-
perature

Klimenko et al. 
[14] derived 
dataset
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molecular descriptors, but not the 3D descriptors, fea-
ture selection was applied to yield another set of descrip-
tor combinations. Feature selection was not applied to 
the sets containing the 3D descriptors, as initial results 
obtained with the 2D molecular descriptors were worse 
when feature selection was applied.

Feature selection
The feature selection algorithm and rationale is docu-
mented in Additional file 1.

Descriptor scaling
All descriptor values were range scaled to lie between 0 
and 1, using the training set ranges, prior to modelling.

Machine learning
Models were built using Multiple Linear Regression 
(MLR) [21] and the non-linear random forest regression 
(RFR) [23, 24] algorithms. For all RFR models, the model 
was built five times using a different random number 
generator seed and each tree was grown on a training set 
sample without replacement, rather than bootstrapping. 
All cross-validation statistics were averaged (arithmetic 
mean) across these seeds, as were all descriptor impor-
tance values.

Validation statistics
Model performance was assessed in terms of the coef-
ficient of determination (R2) and the root mean squared 
error (RMSE) [47]. (Definitions are provided in Addi-
tional file 1.) For the comparison of models on the same 
test set, these statistics are redundant. However, as R2 
is a composite of the mean squared error and the vari-
ance for the test set endpoint values, propagation of 
errors necessarily makes it less robust. Hence, for com-
parisons on the same dataset, using the same cross-val-
idation folds, the mean RMSE values were compared. 
However, RMSE estimates are not comparable for dif-
ferent endpoints or test sets where the range in end-
point values differs [47]. Hence, for comparisons across 
datasets, or on the same dataset using different cross-
validation folds, the mean R2 values were compared.

Cross‑validation protocols
Initially, a “vanilla” cross-validation protocol was 
applied: R repetitions of stratified K-fold cross-vali-
dation (R = 5, K = 5). In addition, results for a novel 
“pseudo cross-validation” protocol are reported: the 
“remove temperature” protocol, labelled the “CV = rt” 
protocol for brevity.

Fig. 2  A summary of the steps taken to transform the curated experimental endpoint datasets (see Fig. 1) into the QSPR-ready datasets used for 
modelling studies (see Table 1). As is explained in the text of Additional file 1, some of these steps were carried out iteratively
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The application of the CV = rt protocol ensured that 
solubility values for the same organic material, measured 
at different temperatures, could not be included in the 
corresponding training and test set. The motivation for 
introducing this protocol was to assess whether simply 
applying a “vanilla” cross-validation protocol could give 
optimistically biased results, when applied to tempera-
ture dependent data—where the dataset instances could 
correspond to the same material, yet with the endpoint 
value measured at a different temperature. (Hence, this 
protocol was only applicable to the datasets derived from 
Klimenko et  al. [14], where the endpoint was tempera-
ture dependent solubility.) The difference between the 
“vanilla” cross-validation protocol (CV = v) and the novel 
pseudo-cross-validation protocol (CV = rt) is illustrated 
by Figs. 3 and 4 respectively.

Statistical significance of differences in cross‑validated 
results
Pairwise differences in arithmetic mean validation statis-
tics, from cross-validation, were evaluated for statistical 
significance for the key scenarios of interest. These key 
scenarios were pairwise comparisons of all correspond-
ing modelling protocols, or cross-validation protocols, 
differing only with respect to the following: (1) whether 
the lattice energy descriptor was included; (2) whether 
the melting point descriptor was included; (3) whether 
the crystal structure based 3D descriptors, as opposed 
to the conformer generator based 3D descriptors, were 
used; (4) whether feature selection was applied; (5) 
whether the CV = v or CV = rt cross-validation protocol 
was applied. For scenarios (1–4), p values were computed 
based on the paired RMSE values. For scenario (5), p val-
ues were computed based on the R2 values.

Statistical significance was assessed via calculating 
approximate p values which were then adjusted, sepa-
rately for each key scenario, to account for the multiple 
comparisons made. All references to statistically signifi-
cant results refer to adjusted p values < 0.05. However, 
only approximate assessments of statistical significance 
could be made and it is possible that the applied analy-
sis somewhat overstated the degree to which statistically 
significant findings were obtained. Hence, all adjusted p 
values are considered apparent indicators of statistical 
significance.

Descriptor importance analysis
A final model, or set of models using five different ran-
dom seeds for RFR, was built on the entirety of the 
relevant dataset and the corresponding descriptor 
importance values, or arithmetic mean values for RFR, 
were analyzed. For MLR, the magnitudes of the descrip-
tor coefficients were retrieved. For RFR, the descriptor 

permutation based importance measure was employed 
[23].

Lattice energy predictions using molecular descriptors
To get some insight into the extent to which calculating 
lattice energies from the crystal structures added infor-
mation to the models of enthalpy of solution and tem-
perature dependent solubility, beyond that inherent in 
the molecular descriptors, models for the lattice energy 

Fig. 3  The application of a standard, or “vanilla”, cross-validation 
protocol (fivefold CV) to temperature dependent endpoint data, 
where the instance IDs comprise the [MATERIAL IDENTITY]_
[TEMPERATURE]. As shown here, instances corresponding to the 
same material, yet with endpoint values measured at different 
temperatures, might be assigned to different folds. (For this 
hypothetical dataset, this means [M1]_[T = 25] and [M1]_[T = 30] 
were assigned to folds F1 and F2 respectively.) Since each fold is used, 
in turn, as the test set, with the remaining data being used as the 
training set, this allows the same material to appear in corresponding 
training and test sets, when the corresponding endpoint values were 
measured at different temperatures
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descriptor were built using the combined set of 2D 
molecular descriptors and random forest regression. 
For the Avdeef_ExDPs_CS_True and Avdeef_ExDPs_
Cal_CS_True datasets, the same cross-validation folds 
were used as per the enthalpy of solution models. For 
the Klimenko_CS_True dataset, the CV = v cross-val-
idation folds were used and all repeated occurrences 
of the same combination of lattice energy and descrip-
tor values, due to different solubility values at different 
temperatures, were removed. Each set of modelling 
results was generated five times, using different random 
seeds. Descriptor importance analysis was carried out 
as per the models of enthalpy of solution and tempera-
ture dependent solubility.

Computational details
Further details related to the software and hardware 
used to generate our results are documented in Addi-
tional file 1.

Results and discussion
Summary of cross‑validated results
Ultimately, cross-validated modelling results were gener-
ated for the Avdeef [17] (enthalpy of solution endpoint) 
and Klimenko et al. [14] (temperature dependent solubility 
endpoint) derived datasets, according to a variety of dif-
ferent combinations of molecular (plus temperature, for 
the temperature dependent solubility endpoint) descrip-
tors, with or without computed lattice energies and with or 

Fig. 4  The application of the CV = rt pseudo-cross-validation protocol to the same hypothetical dataset shown in Fig. 3. The first step entails 
the transformation of 1 into 2, via removing the temperature [T = x] suffix from the ID, deleting all but one occurrence of each truncated ID and 
assigning this truncated ID the arithmetic mean endpoint value associated with all corresponding original IDs. The transformation of 2 into 3 
just entails the application of the standard cross-validation protocol. (In the current case, the nominal endpoint values were required as stratified 
sampling, based on the distribution of endpoint values, was employed for cross-validation.) Finally, the original dataset IDs are assigned the folds 
associated with their truncated IDs, in 3, to give the CV = rt folds 4. This ensures that instance IDs corresponding to the same material, yet with 
endpoint IDs measured at different temperatures, are always assigned to the same fold. (For this hypothetical dataset, this means [M1]_[T = 25] and 
[M1]_[T = 30] were both assigned to fold F1.) This ensures they can never be placed in corresponding training and test sets
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without melting point values, modelling algorithms (RFR 
or MLR), feature selection (yes or no) and cross-validation 
schemes. (N.B. For brevity, we refer to different modelling 
approaches—meaning a given combination of modelling 
algorithm, descriptor set and use, or not, of feature selec-
tion—as different models.) The predictive performance has 
been summarized, for each scenario, in terms of the arith-
metic mean RMSE and R2 values on the validation sets. 
Detailed results are presented, in Excel workbooks, in Addi-
tional file 3. These detailed results include all R2 and RMSE 
values obtained from cross-validation, along with the mean 
of those values and, for key scenarios described under “Sta-
tistical significance of differences in cross-validated results”, 
pairwise differences in those mean values and the corre-
sponding adjusted p values. As explained under “Methods 
and Data”, models were ranked on the same dataset using 
the mean RMSE and, with the exception of comparisons 
between results obtained using different cross-validation 
folds, p values were computed based on the mean RMSE 
values. All code and dataset files required to generate these 
cross-validated results are, as documented in Additional 
file 1, provided in Additional files 4, 5, 6, 7, 8, 9, 10.

Choosing the most suitable cross‑validation protocol
For the Klimenko et  al. [14]. derived datasets, pairwise 
comparison of all corresponding performance estimates 
obtained with the same model evaluated via the CV = v 
and CV = rt cross-validation protocols clearly indicated 
that lower estimates of performance were almost always 
obtained using the CV = rt protocol. For 107 out of the 
relevant 116 scenarios, there was an apparent reduction 
in performance, in terms of the cross-validated mean 
R2, upon moving from the standard cross-validation 
(CV = v) to the pseudo-cross-validation (CV = rt) proto-
col. (Of the remaining nine scenarios, all of these corre-
sponded to extreme overfitting of MLR models.) For 90 
of these 107 pairwise comparisons, the mean differences 
appeared to be statistically significant (Additional file 3).

These results are expected: allowing data for the same 
material to appear in corresponding training and test sets 
at different temperatures is expected to lead to inflated 
performance. As we are most interested in predicting 
temperature dependent solubility profiles for untested 
materials, we focus on the results obtained with our novel 
CV = rt protocol, except when comparing our results to 
those obtained by Klimenko et al. [14].

Comparison to the literature
For the modelling scenarios which were most directly 
comparable to the work of Avdeef [17] and Klimenko 
et al. [14], we typically obtained similar results. Our best 
results, obtained using different modelling approaches, 
were better or fairly similar. However, due to refinements 

we made to their datasets and some differences in 
descriptor calculations, modelling protocols and valida-
tion protocols, we do not report perfectly like-for-like 
comparisons. Further details are provided in Additional 
file 1.

Summary of best cross‑validated results
In order to assess the effect of incorporating different sets 
of descriptors on the predictive performance for both 
endpoints, we focus on the top performing results. We 
present the relevant top ranking and second best results 
in Tables 2 and 3. (Additional file 1: Table S3 includes the 
top ranking CV = v results for the Klimenko et  al. [14] 
derived datasets.)

Effect of incorporating crystallographic information: lattice 
energy descriptor
The top performing model for enthalpy of solution, eval-
uated on the Avdeef_ExDPs_CS_True dataset, included 
calculated lattice energy as a descriptor (Table 2). How-
ever, none of the other top models for enthalpy of solu-
tion (Table  2) or direct prediction of temperature 
dependent solubility (Table  3) incorporated the lattice 
energy descriptor.

This may be partially attributed to the presence of the 
melting point or crystal structure based 3D descriptors 
acting as a partial proxy for the solid state contribu-
tion which the lattice energy descriptor is designed to 
capture. When only those models including neither the 
melting point nor crystal structure based 3D descrip-
tors are considered (see Additional file  3), it remains 
the case that the top model for the Avdeef_ExDPs_CS_
True dataset does and the top model for the Avdeef_
ExDPs_Cal_CS_True dataset does not incorporate the 
lattice energy descriptor. (However, the results on the 
smaller Avdeef_ExDPs_Cal_CS_True dataset may be less 
robust.) However, for the Klimenko_CS_True dataset, 
the new top ranking model does incorporate the lattice 
energy descriptor.

Nonetheless, for all scenarios in which the top per-
forming model incorporated the lattice energy descriptor, 
the apparent performance enhancement over the cor-
responding model which did not incorporate the lattice 
energy descriptor was negligible (Fig.  5) and was never 
statistically significant. This remains the case when only 
those models not incorporating melting point or crystal 
structure based 3D descriptors are considered (Fig.  6). 
For all such scenarios, the increases in mean RMSE, 
upon removing the lattice energy descriptor, were around 
0.03  kJ/mol and 0.00 (2dp) log units for predictions of 
enthalpy of solution and temperature dependent solubil-
ity respectively. The differences in mean R2 were around 
0.00 (2dp).
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Pairwise comparison of all relevant corresponding mod-
els identified only a minority of paired results, for both 
enthalpy of solution datasets and direct predictions of 
temperature dependent solubility (CV = rt), for which the 
inclusion of the lattice energy descriptor appeared to result 
in a statistically significant reduction in mean RMSE. Fur-
ther discussion of the trends across all datasets is presented 
in Additional file 1 and the details for all pairwise compari-
sons are presented in Additional file 3.

Effect of incorporating crystallographic information: 3D 
descriptors based on crystal structure
Only in the case of the Avdeef_ExDPs_CS_True data-
set did the top performing model include the crystal 
structure based 3D descriptors (Tables 2, 3). However, 
upon removing the potentially confounding factors of 
the melting point and lattice energy descriptors, the 
best modelling results for Avdeef_ExDPs_CS_True 

Table 2  Top ranked results according to various scenarios for the enthalpy of solution datasets

All results were obtained without feature selection. All results are rounded to 2dp. The definitions of the 2D molecular descriptors subsets are provided in Additional 
file 1: Table S1. All references to R2 and RMSE denote arithmetic mean values obtained from cross-validation and all model rankings were generated based on the 
mean RMSE values

Dataset Rank Molecular 
descriptors

3D descriptors 
from crystal 
structure?

Melting point 
descriptor 
included

Lattice energy 
descriptor 
included

Method R2 RMSE (kJ/mol)

Avdeef_ExDPs_Cal_
CS_False

1st IntegSub, SiRMSSub False True False RFR 0.63 8.56

Avdeef_ExDPs_Cal_
CS_False

2nd IntegSub, SiRMSSub False False False RFR 0.63 8.58

Avdeef_ExDPs_Cal_
CS_True

1st IntegSub, SiRMSSub False True False RFR 0.26 11.45

Avdeef_ExDPs_Cal_
CS_True

2nd IntegSub, SiRMSSub False True True RFR 0.26 11.47

Avdeef_ExDPs_CS_
False

1st Rdk False False False RFR 0.34 13.82

Avdeef_ExDPs_CS_
False

2nd Rdk False True False RFR 0.34 13.84

Avdeef_ExDPs_CS_
True

1st 3D True False True RFR 0.18 14.93

Avdeef_ExDPs_CS_
True

2nd 3D True True True RFR 0.18 14.95

Table 3  Top ranked results according to various scenarios for the temperature dependent solubility datasets

All results were obtained without feature selection. All results are rounded to 2dp. The definitions of 2D molecular descriptors subsets are provided in Additional file 1: 
Table S1. All references to R2 and RMSE denote arithmetic mean values obtained from cross-validation (CV = rt) and all model rankings were generated based on the 
mean RMSE values

Dataset CV protocol Rank Molecular 
descriptors

3D descriptors 
from crystal 
Structure?

Melting point 
descriptor 
included

Lattice energy 
descriptor 
included

Method R2 RMSE 
(log 
units)

Klimenko_CS_
False

rt 1st IntegSub, 
SiRMSSub, 
Absolv, Ind, Rdk

False True False RFR 0.92 0.70

Klimenko_CS_
False

rt 2nd Rdk, Absolv False True False RFR 0.92 0.70

Klimenko_CS_True rt 1st 3D, IntegSub, 
SiRMSSub, 
Absolv, Ind, Rdk

False True False RFR 0.85 0.83

Klimenko_CS_True rt 2nd Rdk, Absolv False True False RFR 0.85 0.83
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and Klimenko_CS_True (CV = rt) were obtained using 
these descriptors (Additional file 3).

All of these results for the Avdeef_ExDPs_CS_True 
dataset (Figs.  7, 8) appeared statistically significantly 
different to the corresponding result obtained using the 
3D descriptors based upon conformer generator struc-
tures. (This is in spite of the lattice energy descriptor 
also being incorporated into the overall top Avdeef_
ExDPs_CS_True model.) This suggests the models may 
genuinely have benefited from the solid state informa-
tion implicit in the 3D descriptors based upon the crys-
tal structure. However, the same comparison for the 
top Klimenko_CS_True (CV = rt) model, after remov-
ing models with the lattice energy or melting point 

descriptor, found the difference in mean RMSE to the 
corresponding model using 3D descriptors based upon 
conformer generator structures appeared statistically 
insignificant.

Pairwise comparison identified only a minority of 
paired results, for one of the enthalpy of solution data-
sets (Avdeef_ExDPs_CS_True), for which the inclusion of 
crystal structure based 3D descriptors appeared to result 
in a statistically significant reduction in mean RMSE 
compared to the corresponding model using conformer 
generator based 3D descriptors. For the other enthalpy 
of solution dataset and direct prediction of temperature 
dependent solubility, no apparently significantly different 
results were obtained. Further discussion of the trends 
across all datasets is presented in Additional file  1 and 
the details for all pairwise comparisons are presented in 
Additional file 3.

Effect of incorporating melting point
For all relevant scenarios, save for models developed 
using the Avdeef_ExDPs_CS_False or Avdeef_ExDPs_
CS_True datasets, the best performing models incorpo-
rated the melting point descriptor (Tables  2, 3). When 
models incorporating the other solid state contribution 
descriptors—i.e. the lattice energy and crystal structure 
based 3D descriptors—were excluded, the top mod-
els for all crystal structure integrated datasets incorpo-
rated the melting point descriptor. However, it should be 
noted that the apparent increase in best predictive per-
formance upon incorporating the melting point descrip-
tor was, at most, modest (Figs.  9, 10). Moreover, only 
the performance increases for the Klimenko_CS_False 
and Klimenko_CS_True datasets appeared statistically 
significant.

Fig. 5  Cross-validated performance (RMSE) of the top performing 
model where the lattice energy (LE) descriptor was incorporated 
(LHS), compared to the corresponding model which didn’t include 
the lattice energy descriptor (RHS): dataset = Avdeef_ExDPs_CS_True. 
The distributions of cross-validated results are presented as a boxplot, 
with whiskers extending 1.5 times the interquartile range beyond the 
upper and lower quartiles, with the arithmetic mean superimposed 
as a black circle. The presence of a star denotes an apparently 
statistically significant difference in cross-validated mean RMSE

Fig. 6  Cross-validated performance (RMSE) of the top performing models (excluding models incorporating the melting point or crystal structure 
based 3D descriptors) where the lattice energy (LE) descriptor was incorporated (LHS), compared to the corresponding model which didn’t include 
the lattice energy descriptor (RHS): a dataset = Avdeef_ExDPs_CS_True; b dataset = Klimenko_CS_True, CV = rt. All results are presented as per Fig. 5
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Pairwise comparison identified that, for a majority of 
scenarios, the inclusion of the melting point descriptor 
appeared to result in statistically significant enhance-
ment in direct predictions of temperature dependent 
solubility. However, this was almost never observed 
from pairwise comparison of the models of enthalpy 
of solution. Further discussion of the trends across 
all datasets is presented in Additional file  1 and the 
details for all pairwise comparisons are presented in 
Additional file 3.

Effect of feature selection
The application of the feature selection algorithm never 
yielded one of the top models as assessed according 
to any of the evaluation protocols. Hence, it cannot be 
claimed that feature selection improved the best predic-
tive performance.

This is in keeping with the pairwise comparison of 
modelling protocols which differed only in terms of 
whether feature selection was employed. All such com-
parisons where feature selection appeared to improve the 
mean RMSE corresponded to scenarios in which MLR 
was applied in combination with the high dimensional 
combination of all 2D molecular descriptors. Indeed, all 
scenarios involving RFR indicated a reduction in predic-
tive performance upon applying feature selection.

Significance of the temperature descriptor
The importance of the (1/T) descriptor, in terms of its 
coefficient magnitude, was always close to the lowest 
for any descriptor for the evaluated MLR models. Con-
versely, for the evaluated models built using the non-lin-
ear RFR algorithm, the (1/T) descriptor was consistently 
in the top 20% of descriptors, excluding those models for 
which the molecular descriptors were based solely on the 
Absolv or Absolv and Ind (see Additional file 1: Table S1) 
or 3D descriptor sets.

These results can be explained by the van’t Hoff rela-
tionship (see Eq.  1), which posits that, if the standard 
enthalpy of solution is roughly constant over the rel-
evant temperature (T) range, log10(solubility) should 
be linearly related to (1/T) for a given material, with 
the slope of the trend line being proportional to the 

Fig. 7  Cross-validated performance (RMSE) of the top performing 
model where the crystal structure based 3D descriptors were 
incorporated (LHS), compared to the corresponding model using the 
conformer generator based 3D descriptors (RHS): dataset = Avdeef_
ExDPs_CS_True. All results are presented as per Fig. 5

Fig. 8  Cross-validated performance (RMSE) of the top performing models (excluding models incorporating the melting point or lattice energy 
descriptor) where the crystal structure based 3D descriptors were incorporated (LHS), compared to the corresponding model using the conformer 
generator based 3D descriptors (RHS): a dataset = Avdeef_ExDPs_CS_True; b dataset = Klimenko_CS_True, CV = rt. All results are presented as per 
Fig. 5
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standard enthalpy of solution. Hence, due to the varia-
tion in the standard enthalpy of solution across materi-
als, a non-linear relationship will exist between (1/T) and 
log10(solubility) across materials. We found that the van’t 

Hoff relationship and the assumption that the standard 
enthalpy of solution is temperature independent holds 
well for most entries in the Klimenko et al. [14] derived 
datasets, for which an assessment was possible, and that 
the standard enthalpy of solution varied considerably 
across materials.

Detailed results supporting these comments are pro-
vided in Additional file 1.

Significant molecular descriptors
Regarding the question of which sets of molecular 
descriptors yielded the most predictive models, it can 
be seen (Tables  2, 3) that the top models for enthalpy 
of solution or direct prediction of temperature depend-
ent solubility, under different scenarios, were built using 
a variety of descriptor sets. Regarding the question of 
which individual molecular descriptors were found to be 
most important for the models, descriptor analysis sug-
gested that no single molecular descriptor stood out as 
being consistently important, but the descriptors identi-
fied as most important could generally be rationalized 
in terms of the information they conveyed regarding the 
potential for specific kinds of solid state and/or solution 
state interactions.

Detailed results supporting these comments are pro-
vided in Additional file 1.

Discussion of the main findings
The main findings from this work relate to the outcome 
of evaluating temperature dependent solubility models 
via a novel (CV = rt) cross-validation scheme and the 
effect of explicitly incorporating various kinds of solid 
state information into these models or models of the 

Fig. 9  Cross-validated performance (RMSE) of the top performing 
models for all scenarios where they incorporated the melting point 
(MP) descriptor (LHS), compared to the corresponding model 
which didn’t include the MP descriptor (RHS): a dataset = Avdeef_
ExDPs_Cal_CS_True; b dataset = Avdeef_ExDPs_Cal_CS_False; c 
dataset = Klimenko_CS_True, CV = rt; d Klimenko_CS_False, CV = rt. 
All results are presented as per Fig. 5

Fig. 10  Cross-validated performance (RMSE) of the top performing models for all crystal structure integrated datasets, excluding models involving 
the lattice energy or crystal structure based 3D descriptors, where they incorporated the melting point (MP) descriptor (LHS), compared to the 
corresponding model which didn’t include the MP descriptor (RHS): a dataset = Avdeef_ExDPs_CS_True; b dataset = Avdeef_ExDPs_Cal_CS_True; c 
dataset = Klimenko_CS_True, CV = rt. All results are presented as per Fig. 5
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related enthalpy of solution endpoint. Here, we offer pos-
sible explanations for our findings and put them within 
the context of previous studies.

Standard cross‑validation protocols can overestimate 
the performance of models of temperature dependent 
solubility
Our findings make clear that standard cross-validation 
protocols are likely to significantly overestimate the per-
formance of models designed to estimate temperature 
dependent solubility for untested materials, by allowing 
solubility data points measured for the same material 
at slightly different temperatures to be placed in corre-
sponding training and test sets. Of course, this scenario 
could still be a fair test for a model designed to inter-
polate solubility data measured for a given material at a 
couple of temperatures for other relevant temperatures. 
Nonetheless, we can recommend our modified (CV = rt) 
cross-validation scheme for scenarios in which the pre-
dictive performance of QSPR models for the temperature 
dependent solubility profile of untested materials are 
being evaluated.

Solid state descriptors based on crystallographic information 
or melting point data never substantially improved the best 
models of temperature dependent solubility or the related 
enthalpy of solution endpoint
Our results suggest that incorporating the lattice energy 
descriptor, calculated from the assigned crystal structure, 
may improve predictive performance for both tempera-
ture dependent solubility related endpoints under some 
scenarios. However, no statistically significant findings 
were obtained to indicate that this descriptor improves 
the best predictions of enthalpy of solution or the best 
direct predictions of temperature dependent solubility. 
This remained the case when only models without either 
of the other solid state descriptors were considered.

The inclusion of crystallographic information in the 
form of crystal structure based 3D descriptors may 
genuinely improve predictions of enthalpy of solution. 
However, only for one of the two enthalpy of solution 
datasets modelled were apparently statistically significant 
improvements in the best predictions, due to the incor-
poration of crystallographic information in this fashion, 
observed. These descriptors never appeared to statisti-
cally significantly enhance the best direct predictions of 
temperature dependent solubility. This remained the case 
when the other solid state descriptors were removed.

We found that the inclusion of a melting point 
descriptor almost never appeared to yield statistically 
significant improvements in predictions of enthalpy of 
solution. Indeed, this descriptor was never observed 
to result in statistically significant improvement in the 

best enthalpy of solution predictions. This remained 
the case when only those models not incorporating any 
other solid state descriptors were considered. Contrast-
ingly, we found that the inclusion of the melting point 
descriptor appears to result in statistically significant 
performance enhancement for the best direct predic-
tions of temperature dependent solubility. This was in 
keeping with the observation that the inclusion of the 
melting point descriptor often led to apparently statis-
tically significant improvements in direct predictions of 
temperature dependent solubility.

However, even when apparently statistically sig-
nificant improvements in the best predictions were 
observed, they were not substantial (Figs.  5, 6, 7 8, 9, 
10). The failure of any of the solid state descriptors to 
substantially improve either the best direct predictions 
of temperature dependent solubility or the best pre-
dictions of the related enthalpy of solution endpoint, 
even when the other solid state descriptors were not 
included in the models, may be attributed to a vari-
ety of possible, non-mutually exclusive, explanations. 
(1) The variation in the endpoint data, for the investi-
gated datasets, might be primarily dominated by vari-
ations in non-solid state contributions. (2) The solid 
state descriptors are insufficiently good at capturing the 
variation in solid state contributions. (3) The molecular 
descriptors, not including the crystal structure based 
3D descriptors, implicitly capture the variation in solid 
state contributions to a considerable extent. Each of 
these possible explanations is considered in turn.

Do our findings reflect greater variation in non‑solid state 
contributions for the modelled datasets?
If it were the case that non-solid state contributions to 
temperature dependent solubility, or the related enthalpy 
of solution, made a greater contribution to the variation 
in the solubility (or enthalpy) values for our datasets, this 
would suggest that being able to better capture the vari-
ations in solid state contributions would only lead to a 
modest improvement in predictive power for these end-
points. In practice, such a modest improvement might be 
sufficiently small to be deemed statistically insignificant. 
However, whether this could be expected to be the case 
for our modelled datasets is unclear. Recent experimental 
and computational studies have variously indicated that 
the variation in solubility across different public data-
sets was [26] and was not [48] dominated by non-solid 
state contributions. Moreover, we can only speculate on 
whether the relative importance of solid and non-solid 
state contributions to the variability in solubility sug-
gested by these analyses is representative of the situation 
for the datasets studied in our work.
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Do our findings reflect the limitations of the solid state 
descriptors?
It should be noted that there are two kinds of possible 
limitations to the ability of the solid state descriptors to 
capture solid state contributions to the modelled end-
points: (a) inherent limitations; (b) limitations arising 
from the possibility that the solid state descriptors were 
calculated or, in the case of melting point data, measured 
for the wrong polymorph. As discussed under “Integra-
tion with crystal structures”, a very small proportion of 
endpoint data points were annotated with the assessed 
polymorph and, typically, the predicted most stable 
available crystal structure was selected. It has previously 
been suggested that it is not essential to calculate lattice 
energies from the correct polymorph in order to predict 
solubility [49] and computational studies suggest most 
polymorph energies differ by less than 7  kJ/mol [50]. 
Nonetheless, the experimental solubilities of polymorphs 
may differ by around 0.60 log units (log10[molar]) 
[51]. (Elsewhere, higher apparent solubility differences 
between polymorphs are reported, although it is sug-
gested that these differences are typically less than 1.0 log 
units (log10[molar]) [52].) However, given that whether 
the solid form corresponding to the solid state descrip-
tors differs from the polymorph corresponding to the 
solubility or enthalpy of solution data modelled in the 
current work is typically unknown, we are unable to 
assess the extent to which non-inherent limitations of the 
solid state descriptors affect our findings.

The lattice energy descriptor obtained a Pearson’s cor-
relation coefficient of 0.77 (one-tail p value = 10−6) with 
the experimentally estimated lattice energies for the 27 
SUB-48 [29] dataset entries which complied with our 
filtering criteria. This confirms that the force-field pro-
tocol used to compute the lattice energy descriptor was 
a reasonable choice. If this statistic was representative of 
the performance of the lattice energy descriptor for the 
modelled datasets, the lattice energy descriptor should 
significantly capture the solid state contribution to the 
temperature dependent solubility related endpoints. 
Since the SUB-48 dataset was [29], like the datasets mod-
elled in our work, a mixture of pharmaceutical APIs and 
general organic compounds and, as per most entries in 
our datasets, the calculated lowest energy crystal struc-
ture was assigned in the absence of polymorph specific 
information, this statistic could reasonably be expected 
to be representative of how the lattice energy descriptor 
would perform on the modelled datasets.

However, whilst experimental lattice energy estimates 
were not available for the modelled datasets, the cor-
relation between the lattice energy descriptor and the 
available melting point data may be considered indica-
tive of the extent to which the former captures the solid 

state contributions to the enthalpy of solution and tem-
perature dependent solubility data. This can be seen from 
consideration of Eqs.  (2), (3) [53] and (4), from which it 
can be expected that lattice energy and melting point are 
negatively correlated. (In Eqs. 3 and 4, Tm denotes melt-
ing point, �Hfus and �Sfus the enthalpy and entropy of 
fusion respectively, �Hsub the sublimation enthalpy and 
�Hcond the condensation enthalpy.)

Hence, the weak negative correlations between the lat-
tice energy descriptor and the melting point descriptor 
could suggest the lattice energy descriptor did not cap-
ture solid state contributions well for the entirety of these 
datasets (Fig. 11a–c). Moreover, the fact that these corre-
lations were observed to increase when only the subset of 
entries for which crystal structure specific melting point 
data were available was considered (Fig.  11d–f) could 
further suggest that the lattice energy descriptor was not 
uniformly good at capturing solid state contributions for 
all entries in the modelled datasets. (Here, it should be 
noted that around 2% of the Avdeef_ExDPs_CS_True 
and Klimenko_CS_True crystal structures were disor-
dered. However, this was only observed to have caused 
lattice energy calculation errors for one structure in the 
Avdeef_ExDPs_CS_True dataset. Full details are pro-
vided in Additional file  1.) The fact that those correla-
tions were negligibly changed when the actual crystal 
structure specific melting points, retrieved from the CSD 
(version 5.38) using the CSD Python API [54], were used 
(Fig. 11g–i) suggests that the poor correlations observed 
between the lattice energy descriptor and the melting 
point descriptor across the entirety of the modelled data-
sets did not reflect the fact that the melting point data 
used for the latter descriptor may not have corresponded 
to the polymorph for which the lattice energy descriptor 
was calculated.

Nonetheless, it should be noted that an imperfect 
correlation would still be expected between the lattice 
energy descriptor and the crystal structure specific melt-
ing point, even if the former corresponded perfectly to 
the true lattice energy and there were no experimen-
tal errors in the latter. Melting point will be imperfectly 
correlated with the enthalpy of fusion, due to the varia-
tion in the entropy of fusion across materials (Eq. 3). The 
enthalpy of fusion, in turn, will be imperfectly correlated 
with the enthalpy of sublimation, due to the variation in 
the condensation enthalpy across materials (Eq.  4), and 
the latter, in turn, is only linearly related to the lattice 

(3)Tm =
�Hfus

�Sfus

(4)�Hfus = �Hsub +�Hcond
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energy under certain assumptions [29] and at constant 
temperature (Eq. 2). Hence, also taking into account the 
possibility that the melting point descriptor may cor-
respond to a different polymorph, the poor correlation 
of the lattice energy descriptor with the melting point 
descriptor across the modelled datasets may overstate 
the extent to which the lattice energy descriptor fails 
to capture the solid state contribution to the modelled 
endpoints.

The fact that the melting point descriptor did not nec-
essarily correspond to the experimental melting point 
for the polymorph for which enthalpy of solution or 

temperature dependent solubility data were available 
may have contributed to this descriptor failing to fully 
capture the solid state contribution to the modelled 
endpoints. Consideration of the previously mentioned 
subset of dataset entries for which crystal structure spe-
cific melting point data were retrieved from the CSD, 
indicates that melting point data for the same chemi-
cal can differ significantly in some cases. (Full details 
are provided in Additional file 3. Here, it should also be 
noted that we cannot be certain that these discrepan-
cies in melting point data from different data sources 
necessarily reflected melting point differences between 

Fig. 11  Correlation, in terms of the Pearson correlation coefficients (r) and one-tail p values (p), between all N corresponding pairs of lattice energy 
(LE) descriptor values and melting point (MP) values, from different sources, for different datasets: a Klimenko_CS_True dataset, melting point 
descriptor values (N = 129, r = − 0.29, p = 0.00); b Avdeef_ExDPs_CS_True dataset, melting point descriptor values (N = 169, r = − 0.15, p = 0.02); c 
Avdeef_ExDPs_Cal_CS_True dataset, melting point descriptor values (N = 30, r = − 0.24, p = 0.10); d Klimenko_CS_True subset with CSD melting 
point data, melting point descriptor values (N = 17, r = − 0.39, p = 0.06); e Avdeef_ExDPs_CS_True subset with CSD melting point data, melting 
point descriptor values (N = 22, r = − 0.61, p = 0.00); f Avdeef_ExDPs_Cal_CS_True subset with CSD melting point data, melting point descriptor 
values (N = 5, r = − 0.48, p = 0.21); g Klimenko_CS_True subset with CSD melting point data, CSD melting point data (N = 17, r = − 0.37, p = 0.07); 
h Avdeef_ExDPs_CS_True subset with CSD melting point data, CSD melting point data (N = 22, r = − 0.60, p = 0.00); i Avdeef_ExDPs_Cal_CS_True 
subset with CSD melting point data, CSD melting point data (N = 5, r = − 0.52, p = 0.19). N.B. (1) These one tail p values denote the probability of 
getting as negative a correlation coefficient as observed, by chance, given the null-hypothesis of zero correlation. (2) In order to make the plot 
legible, one outlier (CSD refcode TEPHTH13, calculated lattice energy − 2735.71 kcal/mol) was excluded from plot (b). (3) Where a range of melting 
points was retrieved for the specific crystal structure from the CSD, the mean value was used
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polymorphs.) For the Klimenko_CS_True dataset, across 
all 17 pairs of corresponding CSD retrieved melting 
points and melting point descriptor values, the median 
absolute deviation was 1.5, the 95th percentile value was 
41.4 and the maximum value was 85 degrees Kelvin. The 
corresponding statistics for the 22 (5) pairs of melting 
point values obtained for the Avdeef_ExDPs_CS_True 
(Avdeef_ExDPs_Cal_CS_True) dataset were as follows: 
median = 1.75 (2), 95th percentile = 35.9 (12.5), maxi-
mum = 52.2 (14.2) degrees Kelvin.

Finally, regarding the inherent limitations of the solid 
state descriptors considered in this work, the crystal 
structure based 3D descriptors would not be able to fully 
capture all information relevant to lattice interactions. 
These CPSA descriptors [39–41] capture information 
related to polar and non-polar intermolecular forces, 
based on electrostatic distributions at the molecular sur-
face, and a CPSA descriptor, calculated from the molec-
ular structure via a conformer generator, was amongst 
those making a significant contribution to the enthalpy 
of sublimation model of Salahinejad et al. [53]. However, 
these descriptors would have been unable to take account 
of dispersion forces or properly take account of localized 
interactions such as hydrogen bonding. Indeed, they are 
indicated to be weakly dependent on molecular confor-
mation [39, 40].

Future studies should consider computing additional 
3D descriptors, based upon the crystal structure, which 
more fully account for those interactions. Ideally, these 
would explicitly take account of the lattice structure. 
This would arguably result in them better taking account 
of the actual solid state intermolecular interactions 
than crystal structure based 3D molecular descriptors, 
which can only implicitly take account of that informa-
tion. However, as per our current work, if 3D molecular 
descriptors were computed using the crystal structure, 
they would need to be benchmarked against the perfor-
mance of the same 3D descriptors computed without 
knowledge of the crystal structure, using a conformer 
generator.

Do our findings reflect the ability of the molecular descriptors 
to implicitly capture solid state contributions?
It should be acknowledged that molecular descriptors 
cannot capture variations in solid state contributions 
arising from polymorphism. Hence, decent solid state 
descriptors, calculated or measured for the solid form 
for which the endpoint data were measured, would be 
expected to add additional information that molecular 
descriptors cannot capture. However, as previously dis-
cussed, the experimentally assessed polymorph was not 
typically known for the modelled datasets.

Under this scenario, molecular descriptors may be 
just as good at capturing solid state contributions to the 
enthalpy of solution or temperature dependent solu-
bility as the solid state descriptors. The extent to which 
molecular descriptors can capture solid state structural 
information may be illustrated by the reasonable quality 
of models built for the lattice energy descriptor using the 
combined set of 2D molecular descriptors and random 
forest for the Klimenko_CS_True dataset. The cross-
validated mean R2 was 0.60 ± 0.01 (standard error of the 
mean).

The lower performance for the Avdeef_ExDPs_Cal_
CS_True dataset (mean R2 = 0.40 ± 0.04) may reflect the 
fewer data points available for training. However, the 
poor cross-validation results obtained for the Avdeef_
ExDPs_CS_True dataset (mean R2 = − 172.20 ± 26.56) 
are surprising. This arguably reflects the presence of 
some problematic instances distorting the results. For 
three out of five cross-validation repetitions, all R2 val-
ues were negative whilst, for two repetitions, a single fold 
yielded R2 values between 0.70 and 0.78. Nine instances 
were identified with absolute predictions errors greater 
than 50 kcal/mol. (These instances are identified in Addi-
tional file 1. Other than the fact that one of them, CSD 
refcode TEPHTH13, was an extreme lattice energy out-
lier of − 2735.71 kcal/mol, there was no obvious reason 
for them being prediction outliers.) When the modelling 
results were generated again without these instances, a 
much better mean R2 (0.76 ± 0.01) was obtained.

Descriptor importance analysis suggested partial con-
sistency between the most important molecular descrip-
tors, for predictions of calculated lattice energies, across 
all datasets. The common most important descriptors are 
expected to have a close link to solid state intermolecular 
interactions. Further details are provided in Additional 
file 1.

How do our findings regarding the importance of solid state 
descriptors compare to previous modelling studies of related 
endpoints?
Both our findings regarding the effect of incorporating 
the crystal structure derived descriptors (calculated lat-
tice energy or 3D descriptors) and/or the melting point 
descriptor into our models for temperature dependent 
solubility, and the related enthalpy of solution endpoint, 
should be seen in the context of the wider debate in the 
recent literature regarding the importance of explicitly 
representing solid state contributions in models of aque-
ous solubility and the extent to which molecular descrip-
tors can capture solid state contributions [3, 26–30]. 
Emami et al. [27] found that two parameter QSPR models 
for aqueous solubility incorporating experimental melt-
ing point as a descriptor did not perform better than two 
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parameter models based solely on molecular descriptors. 
(However, their results did suggest that a two param-
eter model incorporating the entropy of melting outper-
formed molecular descriptor models.) This is consistent 
with our finding that the inclusion of a melting point 
descriptor within molecular descriptor based models was 
not responsible for statistically significant improvements 
in the best predictions of the related enthalpy of solution 
endpoint. However, it is possibly at odds with our finding 
that melting point data did result in an apparently statis-
tically significant improvement in the best direct predic-
tions of temperature dependent solubility. Nonetheless, it 
should be remembered that even these apparently statis-
tically significant improvements were not substantial.

In keeping with our finding, that incorporating a lat-
tice energy descriptor did not lead to a statistically sig-
nificant improvement in the best model for temperature 
dependent aqueous solubility or the related enthalpy of 
solution, Salahinejad et  al. [3] found that the availabil-
ity of lattice energy or sublimation enthalpy descriptors 
did not significantly improve models of aqueous solubil-
ity. However, whilst those authors [3] used sublimation 
enthalpies, converted to lattice energies as per Eq.  (2), 
estimated from molecular structure [53], our own analy-
sis was based on lattice energies estimated from crystal 
structures. The fact that we obtained similar findings 
might suggest their results were not an artefact of fail-
ing to incorporate crystallographic information into their 
models. On the other hand, the fact that we needed to 
assign a nominal crystal structure in many cases, due to 
the few data points associated with polymorph informa-
tion in our dataset, might be a contributory factor to this 
finding.

In contrast to our findings, McDonagh et al. [30] sug-
gested that random forest models of aqueous solubil-
ity were statistically significantly improved upon adding 
theoretical descriptors, calculated in part from crystal 
structures assigned using a similar protocol to our own, 
to molecular descriptors. However, it should be noted 
that the theoretical descriptors calculated by these 
authors [30] were a combination of solid state energetic 
contributions, calculated from crystal structures using 
the DMACRYS program [55], and non-solid state contri-
butions, computed using Hartree–Fock or MO6-2X cal-
culations, and they only reported statistically significant 
improvements in their models when those theoretical 
descriptors were calculated using MO6-2X calculations. 
This suggests that the theoretical descriptors capturing 
the non-solid state contributions may have been most 
important here. (It should also be noted that their 
assessment of statistically significant differences was 
not identical to the protocol employed herein.) Hence, 
their findings are not necessarily at odds with our own 

observation that incorporating lattice energy descriptors, 
calculated from crystal structures, do not statistically sig-
nificantly improve the best QSPR models of temperature 
dependent aqueous solubility or the related enthalpy of 
solution.

As regards our suggestion that this finding reflects, in 
part, the ability of molecular descriptors to serve, to a 
considerable degree, as proxies for solid state contribu-
tions, various recent studies have considered the extent 
to which molecular descriptors can capture solid state 
contributions to solubility [26, 28, 29, 53]. Both Salahi-
nejad et  al. [53] and Docherty et  al. [26] reported that 
molecular descriptor based QSPR models could capture 
most of the variation in enthalpy of sublimation data for 
diverse organic compounds, with test set R2 values > 0.90. 
However, Abramov [28] recently suggested that the fail-
ure of molecular descriptors to fully capture solid state 
contributions was the major limiting factor in the pre-
diction of aqueous solubility using QSPR methods and 
that the good performance reported for molecular mod-
els of enthalpy of sublimation could represent their abil-
ity to capture short range molecular interactions in the 
solid state, as opposed to long range interactions within 
the crystal. Furthermore, even for enthalpy of sublima-
tion, McDonagh et al. [29] found that QSPR models built 
using theoretical chemistry descriptors, calculated from 
crystal structures, appeared substantially more predictive 
than models built using molecular descriptors, albeit for 
the relatively small SUB-48 dataset.

Hence, these earlier studies support the hypothesis 
that incorporating crystallographic information should 
be able to capture solid state contributions to solubility 
and its temperature dependence better than simply using 
molecular descriptors. This may be reflected in the fact 
that our results offer some evidence that the incorpora-
tion of this information, in the form of crystal based 3D 
molecular descriptors, may genuinely improve the best 
QSPR models of the related enthalpy of solution term. 
However, the fact that our results do not suggest statis-
tically significant improvement, upon incorporating cal-
culated lattice energies, in the best predictions of either 
temperature dependent solubility related endpoint could 
well reflect, in part, the limited extent to which our lat-
tice energy calculations capture solid state contributions 
above and beyond the degree to which this is captured 
by molecular descriptors. In part, this may reflect greater 
discrepancy between the polymorphs for which end-
point data were available and for which the lattice ener-
gies were calculated, compared to some previous studies, 
albeit McDonagh et  al. [29, 30] were obliged to handle 
missing polymorph data in much the same way as per 
our current work. It may also reflect, as suggested by our 
correlation analyses of melting point data and calculated 
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lattice energies (Fig. 11), variations in the performance of 
the lattice energy calculations for different subsets of the 
modelled datasets.

Conclusions
In this work, we have built upon the few QSPR studies 
published to date which have explored the prediction 
of temperature dependent solubility. Specifically, we 
have extended previous work looking at modelling the 
enthalpy of solution, which can be related to temperature 
dependent solubility via the van’t Hoff relationship, and 
direct prediction of temperature dependent solubility 
for aqueous solutions. We built upon these earlier stud-
ies via investigating the following factors: (a) the incor-
poration of crystallographic information, in the form of 
lattice energies or 3D descriptors calculated from crystal 
structures, into the models; (b) the effect of adding versus 
excluding melting point data from the models; (c) a larger 
variety of molecular descriptor permutations; (d) the use 
of feature selection to produce parsimonious models; (e) 
a novel pseudo-cross-validation protocol.

All the different descriptors of solid state contribu-
tions (crystal structure calculated lattice energies, crystal 
structure based 3D descriptors, melting point data) were 
indicated to improve the models for at least one of the 
modelled endpoints for some scenarios. However, none 
of these descriptors was responsible for any substantial 
improvement in the best direct predictions of tempera-
ture dependent solubility or the best predictions of the 
related enthalpy of solution endpoint. This remained the 
case when the effect of one kind of solid state descriptors 
was considered in isolation. This finding is noteworthy 
and surprising, since the importance of the solid state con-
tribution to both endpoints is clear from the underlying 
thermodynamics and, since a variety of solid state arrange-
ments are possible for the same molecular structure, 
molecular descriptors are unlikely to fully capture this 
contribution. Indeed, it has recently been suggested that 
the major source of error in QSPR prediction of solubility 
is the failure of molecular descriptors to fully capture solid 
state contributions. This finding may, in part, reflect limi-
tations in the calculated 3D descriptors and lattice ener-
gies. In the case of the lattice energies, correlation analysis 
with melting point data suggests that the quality of the 
lattice energy calculations varies across different dataset 
entries. Our findings may also, in part, reflect the limited 
availability of polymorph metadata. Both of these reasons 
may have contributed to molecular descriptors implicitly 
capturing solid state contributions to the modelled end-
points comparably to the solid state descriptors for at least 
some of the scenarios considered, limiting the value added 
by incorporating the solid state descriptors.

Our best modelling results were typically compara-
ble to those previously reported in the literature, albeit 
we cannot claim to have performed a perfectly like-for-
like comparison, partly due to refinements we made to 
the previously modelled datasets. We found that feature 
selection, as applied in our work, never improved the 
best modelling results.

Finally, we found that, for direct prediction of tempera-
ture dependent solubility data, standard cross-validation 
protocols tend to overestimate the performance of mod-
els designed to predict temperature dependent solubility 
for untested materials, by allowing solubility data points 
measured for the same material at slightly different tem-
peratures to be placed in corresponding training and test 
sets. Hence, we recommend the use of our novel pseudo-
cross-validation protocol, which avoids including data 
points measured for the same material at different tem-
peratures in corresponding training and test sets.
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