289 research outputs found

    Strategies of a parasite of the ant–Acacia mutualism

    Get PDF
    Mutualisms can be exploited by parasites—species that obtain resources from a partner but provide no services. Though the stability of mutualisms in the presence of such parasites is under intensive investigation, we have little information on life history traits that allow a species to be a successful mutualist or rather a parasite, particularly in cases where both are closely related. We studied the exploitation of Acacia myrmecophytes by the ant, Pseudomyrmex gracilis, contrasting with the mutualistic ant Pseudomyrmex ferrugineus. P. gracilis showed no host-defending behavior and had a negative effect on plant growth. By preventing the mutualist from colonization, P. gracilis imposes opportunity costs on the host plant. P. gracilis produced smaller colonies with a higher proportion of alates than did the mutualist and thus showed an “r-like” strategy. This appears to be possible because P. gracilis relies less on host-derived food resources than does the mutualist, as shown by behavioral and stable isotope studies. We discuss how this system allows the identification of strategies that characterize parasites of mutualisms

    Genomic analysis of the function of the transcription factor gata3 during development of the Mammalian inner ear

    Get PDF
    We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKB beta, a dramatic increase in Akt1/PKB alpha protein and relocation of Akt1/PKB alpha from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27(kip1), a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome

    Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism

    Get PDF
    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth

    Coevolution of dispersal in a parasitoid-host system

    Get PDF
    Interspecific interactions and the evolution of dispersal are both of interest when considering the potential impact of habitat fragmentation on community ecology, but the interaction between these processes is not well studied. We address this by considering the coevolution of dispersal strategies in a host-parasitoid system. An individual-based host-parasitoid metapopulation model was constructed for a patchy environment, allowing for evolution in dispersal rates of both species. Highly rarefied environments with few suitable patches selected against dispersal in both species, as did relatively static environments. Provided that parasitoids persist, all parameter values studied led to stable equilibria in dispersal rates for both species. There was a tendency towards higher dispersal rates in parasitoids due to the asymmetric relationships of the two species to the patches: vacant patches are most valuable for hosts, but unsuitable for parasitoids, which require an established host population to reproduce. High host dispersal rate was favoured by high host population growth rate, and in the parasitoid by high growth rates in both species

    Genetic Basis of Hidden Phenotypic Variation Revealed by Increased Translational Readthrough in Yeast

    Get PDF
    Eukaryotic release factors 1 and 3, encoded by SUP45 and SUP35, respectively, in Saccharomyces cerevisiae, are required for translation termination. Recent studies have shown that, besides these two key factors, several genetic and epigenetic mechanisms modulate the efficiency of translation termination. These mechanisms, through modifying translation termination fidelity, were shown to affect various cellular processes, such as mRNA degradation, and in some cases could confer a beneficial phenotype to the cell. The most studied example of such a mechanism is [PSI+], the prion conformation of Sup35p, which can have pleiotropic effects on growth that vary among different yeast strains. However, genetic loci underlying such readthrough-dependent, background-specific phenotypes have yet to be identified. Here, we used sup35C653R, a partial loss-of-function allele of the SUP35 previously shown to increase readthrough of stop codons and recapitulate some [PSI+]-dependent phenotypes, to study the genetic basis of phenotypes revealed by increased translational readthrough in two divergent yeast strains: BY4724 (a laboratory strain) and RM11_1a (a wine strain). We first identified growth conditions in which increased readthrough of stop codons by sup35C653R resulted in different growth responses between these two strains. We then used a recently developed linkage mapping technique, extreme QTL mapping (X-QTL), to identify readthrough-dependent loci for the observed growth differences. We further showed that variation in SKY1, an SR protein kinase, underlies a readthrough-dependent locus observed for growth on diamide and hydrogen peroxide. We found that the allelic state of SKY1 interacts with readthrough level and the genetic background to determine growth rate in these two conditions

    Fungal infestation boosts fruit aroma and fruit removal by mammals and birds

    Get PDF
    For four decades, an influential hypothesis has posited that competition for food resources between microbes and vertebrates selects for microbes to alter these resources in ways that make them unpalatable to vertebrates. We chose an understudied cross kingdom interaction to experimentally evaluate the effect of fruit infection by fungi on both vertebrate (mammals and birds) fruit preferences and on ecologically relevant fruit traits (volatile compounds, toughness, etc). Our well-replicated field experiments revealed that, in contrast to previous studies, frugivorous mammals and birds consistently preferred infested over intact fruits. This was concordant with the higher level of attractive volatiles (esters, ethanol) in infested fruits. This investigation suggests that vertebrate frugivores, fleshyfruited plants, and microbes form a tripartite interaction in which each part could interact positively with the other two (e.g. both orange seeds and fungal spores are likely dispersed by mammals). Such a mutualistic view of these complex interactions is opposed to the generalized idea of competition between frugivorous vertebrates and microorganisms. Thus, this research provides a new perspective on the widely accepted plant evolutionary dilemma to make fruits attractive to mutualistic frugivores while unattractive to presumed antagonistic microbes that constrain seed dispersalinfo:eu-repo/semantics/publishedVersio

    Intraspecific Inversions Pose a Challenge for the trnH-psbA Plant DNA Barcode

    Get PDF
    BACKGROUND: The chloroplast trnH-psbA spacer region has been proposed as a prime candidate for use in DNA barcoding of plants because of its high substitution rate. However, frequent inversions associated with palindromic sequences within this region have been found in multiple lineages of Angiosperms and may complicate its use as a barcode, especially if they occur within species. METHODOLOGY/PRINCIPAL FINDINGS: Here, we evaluate the implications of intraspecific inversions in the trnH-psbA region for DNA barcoding efforts. We report polymorphic inversions within six species of Gentianaceae, all narrowly circumscribed morphologically: Gentiana algida, Gentiana fremontii, Gentianopsis crinita, Gentianopsis thermalis, Gentianopsis macrantha and Frasera speciosa. We analyze these sequences together with those from 15 other species of Gentianaceae and show that typical simple methods of sequence alignment can lead to misassignment of conspecifics and incorrect assessment of relationships. CONCLUSIONS/SIGNIFICANCE: Frequent inversions in the trnH-psbA region, if not recognized and aligned appropriately, may lead to large overestimates of the number of substitution events separating closely related lineages and to uniting more distantly related taxa that share the same form of the inversion. Thus, alignment of the trnH-psbA spacer region will need careful attention if it is used as a marker for DNA barcoding

    Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina)

    Get PDF
    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (∼450 bp) representing ∼100 morphospecies from ∼650 collections of Agaricomycotina using several sets of new primers. Large introns (∼1500 bp) at variable locations were detected in ∼5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (∼30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms

    Resolving confusions about jarrah dieback - don’t forget the plants

    Get PDF
    The name jarrah dieback has been used for two different disorders, leading to considerable confusion. It was coined in the 1940s to describe the sudden death of groups of jarrah (Eucalyptus marginata) trees in south western Western Australia, which occurred on poorly drained sites, following exceptionally heavy rainfall. In the 1960s these sites were shown to be infested by Phytophthora cinnamomi and jarrah deaths were attributed to it, even though it was only isolated from 5 % of sampled trees. Also the definition of jarrah dieback was expanded to include deaths of many other plants on infested sites, from which P. cinnamomi was more readily isolated. Jarrah trees die from severe water deficiency, indicating problems with water conduction through roots. Xylem vessel diameters vary along roots, being narrow at the root collar, while distally they are larger, providing water storage. Jarrah transpires vigorously during summer, accessing water at depth on sites with deep soil, but being more dependent on internally stored water when root systems are shallower. Following waterlogging, sapwood vessels become blocked with tyloses, reducing both conductivity and potential water storage; such trees may have insufficient water reserves for summer survival. In jarrah P. cinnamomi is unlikely to cause water deficiency because sapwood invasion is rapidly contained in healthy roots. Recent investigations into P. cinnamomi invasion and host responses in other plants show that it can potentially cause a vascular wilt in Banksia spp. and chronic, symptomless infections in herbaceous plants. Susceptibility to waterlogging damage, and/or mortality resulting from infection by P. cinnamomi can only be clarified by detailed knowledge of the hosts and their vulnerabilities. This is essential for making diagnoses, devising management strategies, and avoiding the confusions of the past
    corecore