278 research outputs found

    Measuring the functional sequence complexity of proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abel and Trevors have delineated three aspects of sequence complexity, Random Sequence Complexity (RSC), Ordered Sequence Complexity (OSC) and Functional Sequence Complexity (FSC) observed in biosequences such as proteins. In this paper, we provide a method to measure functional sequence complexity.</p> <p>Methods and Results</p> <p>We have extended Shannon uncertainty by incorporating the data variable with a functionality variable. The resulting measured unit, which we call Functional bit (Fit), is calculated from the sequence data jointly with the defined functionality variable. To demonstrate the relevance to functional bioinformatics, a method to measure functional sequence complexity was developed and applied to 35 protein families. Considerations were made in determining how the measure can be used to correlate functionality when relating to the whole molecule and sub-molecule. In the experiment, we show that when the proposed measure is applied to the aligned protein sequences of ubiquitin, 6 of the 7 highest value sites correlate with the binding domain.</p> <p>Conclusion</p> <p>For future extensions, measures of functional bioinformatics may provide a means to evaluate potential evolving pathways from effects such as mutations, as well as analyzing the internal structural and functional relationships within the 3-D structure of proteins.</p

    IL-3 and oncogenic Abl regulate the myeloblast transcriptome by altering mRNA stability

    Get PDF
    The growth factor interleukin-3 (IL-3) promotes the survival and growth of multipotent hematopoietic progenitors and stimulates myelopoiesis. It has also been reported to oppose terminal granulopoiesis and to support leukemic cell growth through autocrine or paracrine mechanisms. The degree to which IL-3 acts at the posttranscriptional level is largely unknown. We have conducted global mRNA decay profiling and bioinformatic analyses in 32Dcl3 myeloblasts indicating that IL-3 caused immediate early stabilization of hundreds of transcripts in pathways relevant to myeloblast function. Stabilized transcripts were enriched for AU-Response elements (AREs), and an ARE-containing domain from the interleukin-6 (IL-6) 3′-UTR rendered a heterologous gene responsive to IL-3-mediated transcript stabilization. Many IL-3-stabilized transcripts had been associated with leukemic transformation. Deregulated Abl kinase shared with IL-3 the ability to delay turnover of transcripts involved in proliferation or differentiation blockade, relying, in part, on signaling through the Mek/ Erk pathway. These findings support a model of IL-3 action through mRNA stability control and suggest that aberrant stabilization of an mRNA network linked to IL-3 contributes to leukemic cell growth. © 2009 Ernst et al

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Tocotrienols are good adjuvants for developing cancer vaccines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dendritic cells (DCs) have the potential for cancer immunotherapy due to their ability to process and present antigens to T-cells and also in stimulating immune responses. However, DC-based vaccines have only exhibited minimal effectiveness against established tumours in mice and humans. The use of appropriate adjuvant enhances the efficacy of DC based cancer vaccines in treating tumours.</p> <p>Methods</p> <p>In this study we have used tocotrienol-rich fraction (TRF), a non-toxic natural compound, as an adjuvant to enhance the effectiveness of DC vaccines in treating mouse mammary cancers. In the mouse model, six-week-old female BALB/c mice were injected subcutaneously with DC and supplemented with oral TRF daily (DC+TRF) and DC pulsed with tumour lysate from 4T1 cells (DC+TL). Experimental mice were also injected with DC pulsed with tumour lysate and supplemented daily with oral TRF (DC+TL+TRF) while two groups of animal which were supplemented daily with carrier oil (control) and with TRF (TRF). After three times vaccination, mice were inoculated with 4T1 cells in the mammary breast pad to induce tumour.</p> <p>Results</p> <p>Our study showed that TRF in combination with DC pulsed with tumour lysate (DC+TL+TRF) injected subcutaneously significantly inhibited the growth of 4T1 mammary tumour cells as compared to control group. Analysis of cytokines production from murine splenocytes showed significant increased productions of IFN-γ and IL-12 in experimental mice (DC+TL+TRF) compared to control, mice injected with DC without TRF, mice injected with DC pulsed with tumour lysate and mice supplemented with TRF alone. Higher numbers of cytotoxic T cells (CD8) and natural killer cells (NK) were observed in the peripheral blood of TRF adjuvanted DC pulsed tumour lysate mice.</p> <p>Conclusion</p> <p>Our study show that TRF has the potential to be an adjuvant to augment DC based immunotherapy.</p

    An in vitro model to assess the immunosuppressive effect of tick saliva on the mobilization of inflammatory monocyte-derived cells

    Get PDF
    Tick-borne pathogens cause potent infections. These pathogens benefit from molecules contained in tick saliva that have evolved to modulate host innate and adaptive immune responses. This is called "saliva-activated transmission" and enables tick-borne pathogens to evade host immune responses. Ticks feed on their host for relatively long periods; thus, mechanisms counteracting the inflammation-driven recruitment and activation of innate effector cells at the bite site, are an effective strategy to escape the immune response. Here, we developed an original in vitro model to evaluate and to characterize the immunomodulatory effects of tick saliva that prevent the establishment of a local inflammatory immune response. This model mimics the tick bite and enables the assessment of the effect of saliva on the inflammatory-associated dynamic recruitment of cells from the mononuclear phagocyte system. Using this model, we were able to recapitulate the dual effect of tick saliva on the mobilization of inflammatory monocyte-derived cells, i.e. (i) impaired recruitment of monocytes from the blood to the bite wound; and (ii) poor mobilization of monocyte-derived cells from the skin to the draining lymph node. This simple tool reconstitutes the effect of tick saliva in vivo, which we characterized in the mouse, and should enable the identification of important factors facilitating pathogen infection. Furthermore, this model may be applied to the characterization of any pathogen-derived immunosuppressive molecule affecting the establishment of the inflammatory immune response

    Mesenchymal stromal-cell transplants induce oligodendrocyte progenitor migration and remyelination in a chronic demyelination model.

    Get PDF
    Demyelinating disorders such as leukodystrophies and multiple sclerosis are neurodegenerative diseases characterized by the progressive loss of myelin that may lead toward a chronic demyelination of the brain¿s white matter, impairing normal axonal conduction velocity and ultimately causing neurodegeneration. Current treatments modifying the pathological mechanisms are capable of ameliorating the disease; however, frequently, these therapies are not sufficient to repress the progressive demyelination into a chronic condition and permanent loss of function. To this end, we analyzed the effect that bone marrowderived mesenchymal stromal cell (BM-MSC) grafts exert in a chronically demyelinated mouse brain. As a result, oligodendrocyte progenitors were recruited surrounding the graft due to the expression of various trophic signals by the grafted MSCs. Although there was no significant reaction in the non-grafted side, in the grafted regions oligodendrocyte progenitors were detected. These progenitors were derived from the nearby tissue as well as from the neurogenic niches, including the subependymal zone and dentate gyrus. Once near the graft site, the cells matured to myelinating oligodendrocytes. Finally, electrophysiological studies demonstrated that axonal conduction velocity was significantly increased in the grafted side of the fimbria. In conclusion, we demonstrate here that in chronic demyelinated white matter, BM-MSC transplantation activates oligodendrocyte progenitors and induces remyelination in the tissue surrounding the stem cell graft

    A community-integrated home based depression intervention for older African Americans: descripton of the Beat the Blues randomized trial and intervention costs

    Get PDF
    ABSTRACT: BACKGROUND: Primary care is the principle setting for depression treatment; yet many older African Americans in the United States fail to report depressive symptoms or receive the recommended standard of care. Older African Americans are at high risk for depression due to elevated rates of chronic illness, disability and socioeconomic distress. There is an urgent need to develop and test new depression treatments that resonate with minority populations that are hard-to-reach and underserved and to evaluate their cost and cost-effectiveness. METHODS/DESIGN: Beat the Blues (BTB) is a single-blind parallel randomized trial to assess efficacy of a non-pharmacological intervention to reduce depressive symptoms and improve quality of life in 208 African Americans 55+ years old. It involves a collaboration with a senior center whose care management staff screen for depressive symptoms (telephone or in-person) using the Patient Health Questionnaire (PHQ-9). Individuals screened positive (PHQ-9 ≥ 5) on two separate occasions over 2 weeks are referred to local mental health resources and BTB. Interested and eligible participants who consent receive a baseline home interview and then are randomly assigned to receive BTB immediately or 4 months later (wait-list control). All participants are interviewed at 4 (main study endpoint) and 8 months at home by assessors masked to study assignment. Licensed senior center social workers trained in BTB meet with participants at home for up to 10 sessions over 4 months to assess care needs, make referrals/linkages, provide depression education, instruct in stress reduction techniques, and use behavioral activation to identify goals and steps to achieve them. Key outcomes include reduced depressive symptoms (primary), reduced anxiety and functional disability, improved quality of life, and enhanced depression knowledge and behavioral activation (secondary). Fidelity is enhanced through procedure manuals and staff training and monitored by face-to-face supervision and review of taped sessions. Cost and cost effectiveness is being evaluated. DISCUSSION: BTB is designed to bridge gaps in mental health service access and treatments for older African Americans. Treatment components are tailored to specific care needs, depression knowledge, preference for stress reduction techniques, and personal activity goals. Total costs are 584.64/4months;or584.64/4 months; or 146.16 per participant/per month. TRIAL REGISTRATION: ClinicalTrials.gov #NCT00511680

    Physician Perception of Blood Pressure Control and Treatment Behavior in High-Risk Hypertensive Patients: A Cross-Sectional Study

    Get PDF
    Objective: We examined physician perception of blood pressure control and treatment behavior in patients with previous cardiovascular disease and uncontrolled hypertension as defined by European Guidelines. Methods: A cross-sectional study was conducted in which 321 primary care physicians throughout Spain consecutively studied 1,614 patients aged ≥18 years who had been diagnosed and treated for hypertension (blood pressure ≥140/90 mmHg), and had suffered a documented cardiovascular event. The mean value of three blood pressure measurements taken using standardized procedures was used for statistical analysis. Results: Mean blood pressure was 143.4/84.9 mmHg, and only 11.6% of these cardiovascular patients were controlled according to 2007 European Guidelines for Hypertension Management target of <130/80 mmHg. In 702 (49.2%) of the 1426 uncontrolled patients, antihypertensive medication was not changed, and in 480 (68.4%) of these cases this was due to the physicianś judgment that blood pressure was adequately controlled. In 320 (66.7%) of the latter patients, blood pressure was 130-139/80-89 mmHg. Blood pressure level was the main factor associated (inversely) with no change in treatment due to physician perception of adequate control, irrespective of sociodemographic and clinical factors. Conclusions: Physicians do not change antihypertensive treatment in many uncontrolled cardiovascular patients because they considered it unnecessary, especially when the BP values are only slightly above the guideline target. It is possible that the guidelines may be correct, but there is also the possibility that the care by the physicians is appropriate since BP <130/80 mmHg is hard to achieve, and recent reviews suggest there is insufficient evidence to support such a low BP targetFunding for this study was obtained from RECORDATI ESPAÑA, S.L through an unrestricted grant. Krista Lundelin has a ‘‘Rio Hortega’’ research training contract (Expediente CM10/00327) from the Ministry of Science and Innovation (Instituto de Salud Carlos III), Spain Governmen

    Interrelationship between Dendritic Cell Trafficking and Francisella tularensis Dissemination following Airway Infection

    Get PDF
    Francisella tularensis, the etiological agent of the inhalation tularemia, multiplies in a variety of cultured mammalian cells. Nevertheless, evidence for its in vivo intracellular residence is less conclusive. Dendritic cells (DC) that are adapted for engulfing bacteria and migration towards lymphatic organs could serve as potential targets for bacterial residence and trafficking. Here, we focus on the in vivo interactions of F. tularensis with DC following airway infection of mice. Lethal airway infection of mice with the live vaccine strain (LVS) results in trafficking of a CD11bhigh/CD11cmed/autofluorescencelow DC subset from the respiratory tract to the draining mediastinal lymph node (MdLN). Simultaneously, a rapid, massive bacterial colonization of the MdLN occurs, characterized by large bacterial foci formation. Analysis of bacteria in the MdLN revealed a major population of extracellular bacteria, which co-exists with a substantial fraction of intracellular bacteria. The intracellular bacteria are viable and reside in cells sorted for DC marker expression. Moreover, in vivo vital staining experiments indicate that most of these intracellular bacteria (∼75%) reside in cells that have migrated from the airways to the MdLN after infection. The correlation between DC and bacteria accumulation in the MdLN was further demonstrated by manipulating DC migration to the MdLN through two independent pathways. Impairment of DC migration to the MdLN, either by a sphingosine-1-phosphate receptor agonist (FTY720) or by the D prostanoid receptor 1 agonist (BW245C), resulted in reduced bacterial colonization of MdLN. Moreover, BW245C treatment delayed the onset of morbidity and the time to death of the infected mice. Taken together, these results suggest that DC can serve as an inhabitation niche for F. tularensis in the early stages of infection, and that DC trafficking plays a role in pathogen dissemination. This underscores the therapeutic potential of DC migration impairing drugs in tularemia treatment

    A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    Get PDF
    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for longterm protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal ntigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine
    • …
    corecore