167 research outputs found

    The Molecular Phylogenetic Signature of Clades in Decline

    Get PDF
    Molecular phylogenies have been used to study the diversification of many clades. However, current methods for inferring diversification dynamics from molecular phylogenies ignore the possibility that clades may be decreasing in diversity, despite the fact that the fossil record shows this to be the case for many groups. Here we investigate the molecular phylogenetic signature of decreasing diversity using the most widely used statistic for inferring diversity dynamics from molecular phylogenies, the γ statistic. We show that if a clade is in decline its molecular phylogeny may show evidence of the decrease in the diversification rate that occurred between its diversification and decline phases. The ability to detect the change in diversification rate depends largely on the ratio of the speciation rates of the diversification and decline phases, the higher the ratio the stronger the signal of the change in diversification rate. Consequently, molecular phylogenies of clades in relative rapid decline do not carry a signature of their decreasing diversification. Further, the signal of the change in diversification rate, if present, declines as the diversity drop. Unfortunately, the molecular signature of clades in decline is the same as the signature produced by diversity dependent diversification. Given this similarity, and the inability of current methods to detect declining diversity, it is likely that some of the extant clades that show a decrease in diversification rate, currently interpreted as evidence for diversity dependent diversification, are in fact in decline. Unless methods can be developed that can discriminate between the different modes of diversification, specifically diversity dependent diversification and declining diversity, we will need the fossil record, or data from some other source, to distinguish between these very different diversity trajectories

    Mega-evolutionary dynamics of the adaptive radiation of birds

    Get PDF
    The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow- downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin’s finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowd-sourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks

    Convergence and divergence in the evolution of cat skulls: temporal and spatial patterns of morphological diversity

    Get PDF
    Background: Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective. Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats. Methodology/Principal Findings: A new phylogenetic analysis supports the monophyly of saber-toothed cats (Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various sabertoothed tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae, we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats. Conclusions/Significance: Ancestors of large cats in the ‘Panthera’ lineage tend to occupy, at a much later stage, morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in reconstructing temporal transitions across two-dimensional trait spaces, can be used in ecophenotypical and functional diversity studies, and may reveal novel patterns of morphospace occupation

    Outcome of primary resurfacing hip replacement: evaluation of risk factors for early revision: 12,093 replacements from the Australian Joint Registry

    Get PDF
    BACKGROUND AND PURPOSE: The outcome of modern resurfacing remains to be determined. The Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) started collection of data on hip resurfacing at a time when modern resurfacing was started in Australia. The rate of resurfacing has been higher in Australia than in many other countries. As a result, the AOANJRR has one of the largest series of resurfacing procedures. This study was undertaken to determine the results of this series and the risk factors associated with revision. PATIENTS AND METHODS: Data from the AOANJRR were used to analyze the survivorship of 12,093 primary resurfacing hip replacements reported to the Joint Replacement Registry between September 1999 and December 2008. This was compared to the results of primary conventional total hip replacement reported during the same period. The Kaplan-Meier method and proportional hazards models were used to determine risk factors such as age, sex, femoral component size, primary diagnosis, and implant design. RESULTS: Female patients had a higher revision rate than males; however, after adjusting for head size, the revision rates were similar. Prostheses with head sizes of less than 50 mm had a higher revision rate than those with head sizes of 50 mm or more. At 8 years, the cumulative per cent revision of hip resurfacing was 5.3 (4.6-6.2), as compared to 4.0 (3.8-4.2) for total hip replacement. However, in osteoarthritis patients aged less than 55 years with head sizes of 50 mm or more, the 7-year cumulative per cent revision for hip resurfacing was 3.0 (2.2-4.2). Also, hips with dysplasia and some implant designs had an increased risk of revision. INTERPRETATION: Risk factors for revision of resurfacing were older patients, smaller femoral head size, patients with developmental dysplasia, and certain implant designs. These results highlight the importance of patient and prosthesis selection in optimizing the outcome of hip resurfacing

    Different diversity-dependent declines in speciation rate unbalances species richness in terrestrial slugs

    Get PDF
    Two genera of terrestrial slugs (Arion and Geomalacus) display a striking disproportion in species richness in the Iberian Peninsula. While there are 17 Iberian endemic species in Arion, morphological criteria only recognize four species within Geomalacus. Sequence data were used to test whether these differences could result from: (1) cryptic diversity within Geomalacus; (2) an earlier origin for Arion (older clades are expected to accumulate more species); (3) distinct patterns of diversification rates (higher initial speciation rates in Arion), and (4) some combination of the above factors (e.g., an older clade with higher speciation rates). Species delimitation tests based on mitochondrial and nuclear data revealed eight cryptic lineages within Geomalacus that lessened the asymmetry; nevertheless, the disparity required further investigation. No meaningful differences in crown group ages of each recovered clade were found. Regardless the different premises of the two equally plausible diversification models (similar initial speciation rates vs. higher initial speciation rates in Geomalacus), both coincide on diversity-dependent diversification for the two groups but weaker rate declines in Arion best explains the observed asymmetry in species richness. Also, the broader environmental tolerance combined with a faster dispersal and wider distribution may have represented an evolutionary advantage for Arion.FCT (Fundacao para a Ciencia e Tecnologia, Portugal) [SFRH/BPD/109685/2015]; FSE (Fundo Social Europeu). [SFRH/BD/30024/2006]; FCT strategic plan [UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio

    Challenges of Religious Literacy in Education : Islam and the Governance of Religious Diversity in Multi-faith Schools

    Get PDF
    This chapter seeks take part in an emerging research where religion is approached as a whole school endeavor. Previous research and policy recommendations typically focused on teaching about religion in school, but the accommodation of religious diversity in the wider school culture merits more attention. Based on observations in our multiple case studies, we discuss the multi-level governance of religious diversity in Finnish multi-faith schools with a particular focus on the challenges of religious literacy for educators. The three examples we present focus on the inclusion of Muslims in Finnish schools and in particular on the challenges for educator (1) in interpreting the distinction between religion and culture, (2) in recognizing and handling intra-religious diversity, and (3) in being aware of Protestant conceptions of religion and culture. A theme cutting across these examples is how they reflect the tendencies either to see different situations merely through the lens of religion (religionisation), or not to recognize the importance of religion at all (religion-blindness). We argue that religious literacy should be recognized and developed as a vital part of the intercultural competencies of educators.Peer reviewe

    Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil

    Get PDF
    Biochar has been proposed as a tool to enhance phytostabilisation of contaminated soils but little data are available to illustrate the direct effect on roots in contaminated soils. This work aimed to investigate specific root traits and to assess the effect of biochar amendment on contaminant availability. Amendment with two different types of biochar, pine woodchip and olive tree pruning, was assessed in a rhizobox experiment with maize planted in a soil contaminated with significant levels of copper and arsenic. Amendment was found to significantly improve root traits compared to the control soil, particularly root mass density and root length density. Copper uptake to plants and ammonium sulphate extractable copper was significantly less in the biochar amended soils. Arsenic uptake and extractability varied with type of biochar used but was not considered to be the limiting factor affecting root and shoot development. Root establishment in contaminated soils can be enhanced by biochar amendment but choice of biochar is key to maximising soil improvement and controlling contaminant availability

    Convergent, Parallel and Correlated Evolution of Trophic Morphologies in the Subfamily Schizothoracinae from the Qinghai-Tibetan Plateau

    Get PDF
    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP

    Diversity dynamics in New Caledonia: towards the end of the museum model?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The high diversity of New Caledonia has traditionally been seen as a result of its Gondwanan origin, old age and long isolation under stable climatic conditions (the museum model). Under this scenario, we would expect species diversification to follow a constant rate model. Alternatively, if New Caledonia was completely submerged after its breakup from Gondwana, as geological evidence indicates, we would expect species diversification to show a characteristic slowdown over time according to a diversity-dependent model where species accumulation decreases as space is filled.</p> <p>Results</p> <p>We reanalyze available datasets for New Caledonia and reconstruct the phylogenies using standardized methodologies; we use two ultrametrization alternatives; and we take into account phylogenetic uncertainty as well as incomplete taxon sampling when conducting diversification rate constancy tests. Our results indicate that for 8 of the 9 available phylogenies, there is significant evidence for a diversification slowdown. For the youngest group under investigation, the apparent lack of evidence of a significant slowdown could be because we are still observing the early phase of a logistic growth (i.e. the clade may be too young to exhibit a change in diversification rates).</p> <p>Conclusions</p> <p>Our results are consistent with a diversity-dependent model of diversification in New Caledonia. In opposition to the museum model, our results provide additional evidence that original New Caledonian biodiversity was wiped out during the episode of submersion, providing an open and empty space facilitating evolutionary radiations.</p

    Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera

    Get PDF
    Acoustic communication is enabled by the evolution of specialised hearing and sound producing organs. In this study, we performed a large-scale macroevolutionary study to understand how both hearing and sound production evolved and affected diversification in the insect order Orthoptera, which includes many familiar singing insects, such as crickets, katydids, and grasshoppers. Using phylogenomic data, we firmly establish phylogenetic relationships among the major lineages and divergence time estimates within Orthoptera, as well as the lineage-specific and dynamic patterns of evolution for hearing and sound producing organs. In the suborder Ensifera, we infer that forewing-based stridulation and tibial tympanal ears co-evolved, but in the suborder Caelifera, abdominal tympanal ears first evolved in a non-sexual context, and later co-opted for sexual signalling when sound producing organs evolved. However, we find little evidence that the evolution of hearing and sound producing organs increased diversification rates in those lineages with known acoustic communication
    • …
    corecore