3,341 research outputs found

    Automatic Induction of Neural Network Decision Tree Algorithms

    Full text link
    This work presents an approach to automatically induction for non-greedy decision trees constructed from neural network architecture. This construction can be used to transfer weights when growing or pruning a decision tree, allowing non-greedy decision tree algorithms to automatically learn and adapt to the ideal architecture. In this work, we examine the underpinning ideas within ensemble modelling and Bayesian model averaging which allow our neural network to asymptotically approach the ideal architecture through weights transfer. Experimental results demonstrate that this approach improves models over fixed set of hyperparameters for decision tree models and decision forest models.Comment: This is a pre-print of a contribution "Chapman Siu, Automatic Induction of Neural Network Decision Tree Algorithms." To appear in Computing Conference 2019 Proceedings. Advances in Intelligent Systems and Computing. Implementation: https://github.com/chappers/automatic-induction-neural-decision-tre

    Chatter, sticking and chaotic impacting motion in a two-degree of freedom impact oscillator

    Get PDF
    We consider the dynamics of a two-degree of freedom impact oscillator subject to a motion limiting constraint. These systems exhibit a range of periodic and nonperiodic impact motions. For a particular set of parameters, we consider the bifurcations which occur between differing regimes of impacting motion and in particular those which occur due to a grazing bifurcation. Unexpected resonant behavior is also observed, due to the complexity of the dynamics. We consider both periodic and chaotic chatter motions and the regions of sticking which exist. Finally we consider the types of chaotic motion that occur within the parameter range. We discuss the possibility in relating successive low velocity impacts, especially with respect to possible low dimensional mappings for such a system

    Environmental assessment of the near-net-shape electrochemical metallisation process and the Kroll-electron beam melting process for titanium manufacture

    Get PDF
    The enforcement of environmental policies, in recent years, has become one of the major driving forces for industrial upgrading. Therefore, this study is focused on the evaluation of the environmental impact of a newly proposed titanium additive manufacturing process, including its in-depth comparison with the conventional method. This new method, referred to as Near-net-shape Electrochemical Metallisation, is based on the in-situ metallisation (via the FFC-Cambridge Process) of 3D-printed titanium oxide precursors (using Direct Ink Writing Process). In order to evaluate the main contributors to the environmental damage and to compare them with the conventional route for titanium manufacturing, the gate-to-gate Life Cycle Assessment has been conducted following established international standards. From this, the main contributors within the Near-net-shape Electrochemical Metallisation process were identified to be electricity and synthetic rutile, with medium impacts from argon and nickel. It was found that major impacts were challenging to be reduced without affecting the properties of the final product. However, the medium impacts can theoretically be modified, yielding potential improvements in the sustainability of the process by 10%. When compared to the conventional route (consisting of the Kroll Process, Free Fall Gas Atomisation and Electron Beam Melting), the end point results demonstrated that, by adopting the Near-net-shape Electrochemical Metallisation Process, the overall impact of titanium fabrication was dramatically reduced. Specifically, an average reduction of 68% for the ecosystem, human health and resources was observed

    Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing

    Get PDF
    Gas chemical sensors are strongly affected by drift, i.e., changes in sensors' response with time, that may turn statistical models commonly used for classification completely useless after a period of time. This paper presents a new classifier that embeds an adaptive stage able to reduce drift effects. The proposed system exploits a state-of-the-art evolutionary strategy to iteratively tweak the coefficients of a linear transformation able to transparently transform raw measures in order to mitigate the negative effects of the drift. The system operates continuously. The optimal correction strategy is learnt without a-priori models or other hypothesis on the behavior of physical-chemical sensors. Experimental results demonstrate the efficacy of the approach on a real problem

    Development of the Fray-Farthing-Chen Cambridge Process: towards the sustainable production of titanium and its alloys

    Get PDF
    The Kroll process has been employed for titanium extraction since the 1950s. It is a labour and energy intensive multi-step semi-batch process. The post-extraction processes for making the raw titanium into alloys and products are also excessive, including multiple remelting steps. Invented in the late 1990s, the Fray-Farthing-Chen (FFC) Cambridge process extracts titanium from solid oxides at lower energy consumption via electrochemical reduction in molten salts. Its ability to produce alloys and powders, while retaining the cathode shape also promises energy and material efficient manufacturing. Focusing on titanium and its alloys, this article reviews the recent development of the FFC-Cambridge process in two aspects, (i) resource and process sustainability and (ii) advanced post-extraction processing

    Age modulates the injury-induced metallomic profile in the brain

    Full text link
    © 2017 The Royal Society of Chemistry. The biological transition metals iron (Fe), copper (Cu) and zinc (Zn) are thought to contribute to the neuronal pathologies that occur following traumatic brain injury (TBI), and indeed our previously published work in young (3 month-old) mice clearly demonstrates a significant spatiotemporal modulation of metals following TBI. Of note, however, is the literature observation that there is both an apparent detrimental effect of aging on TBI outcomes and an alteration in metals and their various transporters with normal advancing age. Therefore, to determine whether there was an interaction between aging, metals and TBI, we have utilised laser ablation-inductively coupled plasma-mass spectrometry to examine the spatial and temporal distribution of Fe, Zn and Cu following an acute controlled cortical impact brain injury in aged (24 months) rodents. The relative abundance of metals in corresponding regions within the ipsilateral and contralateral hemispheres as well as the hippocampus was assessed. Substantial region and time point specific alterations in Fe, Zn and Cu were identified immediately and up to 28 days post-TBI. The data from this follow-up study has also been compared to our previous data from young animals, and aged mice exhibit an appreciably enhanced and persistent elevation of all metals in every region surveyed, with individual metal disparities at various time points observed post-injury. This may potentially contribute to the acceleration in the onset of cognitive decline and neurological disease that has been observed in the aged population following head trauma

    Assessment of toxicity reduction in ZnS substituted CdS:P3HT bulk heterojunction solar cells fabricated using a single-source precursor deposition

    Get PDF
    Utilisation of cadmium sulphide (CdS) for the preparation of hybrid bulk heterojunction (BHJ) solar cells is limited due to its high human, soil and marine toxicity. This work aims to reduce the toxicity of the cadmium based hybrid bulk heterojunctions, by varying the composition of metal sulphide nanoparticles between CdS and zinc sulphide (ZnS). Furthermore, these devices were created using a single-source precursor, which limits potential barriers for scaling up this process to industrial scale. It was found that the chemical composition of fabricated devices varied as expected; however, comparable morphologies were noted by SEM analyses. Toxicity of fabricated photovoltaic devices was estimated according to the life cycle assessment methodology, using the SimaPro software. Although negligible changes between the band gaps of prepared devices were calculated by decreasing the Cd load to 50 wt%, over 50 % reduction to human toxicity could be achieved. As a photovoltaic device, the highest power conversion efficiency (0.018 %) was observed for the device containing 75 wt% Cd and 25 wt% Zn, which also showed significant reductions for human and environmental toxicity (25 % and 19 % reduction, respectively) in comparison to the device containing only CdS, while increasing the power conversion efficiency by roughly 30 %. It was also noted that although the ZnS only device had the lowest efficiency (0.002 %, a decrease of roughly 98 %), however, this allowed for a 99 % reduction in human toxicity and a 73 % reduction in terrestrial ecotoxicity

    Interpreting physical performance in professional soccer match-play: Should we be more pragmatic in our approach?

    Get PDF
    Academic and practitioner interest in the physical performance of male professional soccer players in the competition setting determined via time-motion analyses has grown substantially over the last four decades leading to a substantial body of published research and aiding development of a more systematic evidence-based framework for physical conditioning. Findings have forcibly shaped contemporary opinions in the sport with researchers and practitioners frequently emphasising the important role that physical performance plays in match outcomes. Time-motion analyses have also influenced practice as player conditioning programmes can be tailored according to the different physical demands identified across individual playing positions. Yet despite a more systematic approach to physical conditioning, data indicate that even at the very highest standards of competition, the contemporary player is still susceptible to transient and end-game fatigue. Over the course of this article, the author suggests that a more pragmatic approach to interpreting the current body of time-motion analysis data and its application in the practical setting is nevertheless required. Examples of this are addressed using findings in the literature to examine: a) the association between competitive physical performance and ‘success’ in professional soccer, b) current approaches to interpreting differences in time-motion analysis data across playing positions and, c) whether data can realistically be used to demonstrate the occurrence of fatigue in match-play. Gaps in the current literature and directions for future research are also identified

    Lightcurve Classification in Massive Variability Surveys II: Transients towards the Large Magellanic Cloud

    Full text link
    Automatic classification of variability is now possible with tools like neural networks. Here, we present two neural networks for the identification of microlensing events -- the first discriminates against variable stars and the second against supernovae. The inputs to the networks include parameters describing the shape and the size of the lightcurve, together with colour of the event. The network computes the posterior probability of microlensing, together with an estimate of the likely error. An algorithm is devised for direct calculation of the microlensing rate from the output of the neural networks. We present a new analysis of the microlensing candidates towards the Large Magellanic Cloud (LMC). The neural networks confirm the microlensing nature of only 7 of the possible 17 events identified by the MACHO experiment. This suggests that earlier estimates of the microlensing optical depth towards the LMC may have been overestimated. A smaller number of events is consistent with the assumption that all the microlensing events are caused by the known stellar populations in the outer Galaxy/LMC.Comment: 11 pages, MNRAS, in pres

    Repeated sprint ability and muscular responses according to the age category in elite youth soccer players

    Get PDF
    The aim of this study was to analyse the influence of age category on the performance and muscle response after a Repeated Sprint Ability (RSA) test in elite youth soccer players. 62 soccer players from three different age categories (Under 14 [n = 21], Under 16 [n = 20], and Under 18 [n = 21]) were selected to participate in this study. Players completed an RSA test (7 × 30 m) with a 20-s recovery between sprints. The muscular response to an electrical stimulus before and after the test of both the biceps femoris (BF) and the rectus femoris (RF) were evaluated using tensiomyography. A two-way ANOVA was used to analyse the differences in RSA parameters in each of the four distance-intervals (0–5; 5–25; 25–30; 0–30 m) between sprint and age category. The U14 age category (5.30 ± 0.30 s) showed higher mean sprint times than U16 (4.62 ± 0.20 s) and U18 (4.46 ± 0.17 s) throughout the entire test (p 0.05), although the delay time (Td) of the muscle was significantly lower after the RSA test in U16 players (−1.53 ms, CI95%: −2.607 to −0.452; ES: 0.38) and U18 players (−1.11 ms, CI95%: −2.10 to −0.12; ES: 0.22). In conclusion, this study revealed an increase in physical performance and muscle response variability after a repeated sprint ability test in the U16's and over. The fatigue induced by the RSA test did not show differences depending on the age of the players, although muscle mechanical properties were altered after the RSA test in U16 and U18 soccer players. Physical performance and muscle response can be complementary variables in managing fatigue according to the age category in soccer players.Sin financiaciĂłn3.367 JCR (2019) Q1, 20/81 Physiology1.211 SJR (2019) Q2, 52/186 Physiology, 31/107 Physiology (medical)No data IDR 2019UE
    • 

    corecore