120 research outputs found

    Serosurvey of Coxiella burnetii (Q fever) in Dromedary Camels (Camelus dromedarius) in Laikipia County, Kenya

    Get PDF
    Dromedary camels (Camelus dromedarius) are an important protein source for people in semi-arid and arid regions of Africa. In Kenya, camel populations have grown dramatically in the past few decades resulting in the potential for increased disease transmission between humans and camels. An estimated four million Kenyans drink unpasteurized camel milk, which poses a disease risk. We evaluated the seroprevalence of a significant zoonotic pathogen, Coxiella burnetii (Q fever), among 334 camels from nine herds in Laikipia County, Kenya. Serum testing revealed 18.6% positive seroprevalence of Coxiella burnetii (n = 344). Increasing camel age was positively associated with C. burnetii seroprevalence (OR = 5.36). Our study confirmed that camels living in Laikipia County, Kenya, have been exposed to the zoonotic pathogen, C. burnetii. Further research to evaluate the role of camels in disease transmission to other livestock, wildlife and humans in Kenya should be conducted

    Exploring Older Adult Susceptibility to Fraudulent Computer Pop-Up Interruptions

    Get PDF
    © 2019, Springer International Publishing AG, part of Springer Nature. The proliferation of Internet connectivity and accessibility has been accompanied by an increase in cyber-threats, including fraudulent communications. Fake computer updates, which attempt to persuade people to download malicious software by mimicking trusted brands and/or instilling urgency, are one way in which fraudsters try to infiltrate systems. A recent study of young university students (M 18.52-years) found that when such pop-ups interrupt a demanding cognitive task, participants spent little time viewing them and were more likely to miss suspicious cues and accept these updates compared to when they were viewed without the pressure to resume a suspended task [1]. The aim of the current experiment was to test an older adult sample (N = 29, all >60 years) using the same paradigm. We predicted that they would be more susceptible to malevolent pop-ups [2]; trusting them more than younger adults (e.g., [3]), and would attempt to resume the interrupted task faster to limit forgetting of encoded items. Phase 1 involved serial recall memory trials interrupted by genuine, mimicked, and low authority pop-ups. During phase 2, participants rated messages with unlimited time and gave reasons for their decisions. It was found that more than 70% of mimicked and low authority pop-ups were accepted in Phase 1 vs ~80% genuine pop-ups (and these were all approximately 10% higher than [1]). This was likely due to a greater tendency to ignore or miss suspicious content when performing under pressure, despite spending longer with messages and reporting high awareness of scam techniques than younger adults. Older adult participants were more suspicious during Phase 2 performing comparably to the younger adults in [1]. Factors that may impact older adult decisions relating to fraudulent computer communications are discussed, as well as theoretical and practical implications

    Causes of Morbidity in Wild Raptor Populations Admitted at a Wildlife Rehabilitation Centre in Spain from 1995-2007: A Long Term Retrospective Study

    Get PDF
    Background: Morbidity studies complement the understanding of hazards to raptors by identifying natural or anthropogenic factors. Descriptive epidemiological studies of wildlife have become an important source of information about hazards to wildlife populations. On the other hand, data referenced to the overall wild population could provide a more accurate assessment of the potential impact of the morbidity/mortality causes in populations of wild birds. Methodology/Principal Findings: The present study described the morbidity causes of hospitalized wild raptors and their incidence in the wild populations, through a long term retrospective study conducted at a wildlife rehabilitation centre of Catalonia (1995-2007). Importantly, Seasonal Cumulative Incidences (SCI) were calculated considering estimations of the wild population in the region and trend analyses were applied among the different years. A total of 7021 birds were analysed: 7 species of Strigiformes (n = 3521) and 23 of Falconiformes (n = 3500). The main causes of morbidity were trauma (49.5%), mostly in the Falconiformes, and orphaned/young birds (32.2%) mainly in the Strigiformes. During wintering periods, the largest morbidity incidence was observed in Accipiter gentillis due to gunshot wounds and in Tyto alba due to vehicle trauma. Within the breeding season, Falco tinnunculus (orphaned/young category) and Bubo bubo (electrocution and metabolic disorders) represented the most affected species. Cases due to orphaned/young, infectious/parasitic diseases, electrocution and unknown trauma tended to increase among years. By contrast, cases by undetermined cause, vehicle trauma and captivity decreased throughout the study period. Interestingly, gunshot injuries remained constant during the study period. Conclusions/Significance: Frequencies of morbidity causes calculated as the proportion of each cause referred to the total number of admitted cases, allowed a qualitative assessment of hazards for the studied populations. However, cumulative incidences based on estimated wild raptor population provided a more accurate approach to the potential ecological impact of the morbidity causes in the wild populations

    110 Years of Avipoxvirus in the Galapagos Islands

    Get PDF
    The role of disease in regulating populations is controversial, partly owing to the absence of good disease records in historic wildlife populations. We examined birds collected in the Galapagos Islands between 1891 and 1906 that are currently held at the California Academy of Sciences and the Zoologisches Staatssammlung Muenchen, including 3973 specimens representing species from two well-studied families of endemic passerine birds: finches and mockingbirds. Beginning with samples collected in 1899, we observed cutaneous lesions consistent with Avipoxvirus on 226 (6.3%) specimens. Histopathology and viral genotyping of 59 candidate tissue samples from six islands showed that 21 (35.6%) were positive for Avipoxvirus, while alternative diagnoses for some of those testing negative by both methods were feather follicle cysts, non-specific dermatitis, or post mortem fungal colonization. Positive specimens were significantly nonrandomly distributed among islands both for mockingbirds (San Cristobal vs. Espanola, Santa Fe and Santa Cruz) and for finches (San Cristobal and Isabela vs. Santa Cruz and Floreana), and overall highly significantly distributed toward islands that were inhabited by humans (San Cristobal, Isabela, Floreana) vs. uninhabited at the time of collection (Santa Cruz, Santa Fe, Espanola), with only one positive individual on an uninhabited island. Eleven of the positive specimens sequenced successfully were identical at four diagnostic sites to the two canarypox variants previously described in contemporary Galapagos passerines. We conclude that this virus was introduced late in 1890′s and was dispersed among islands by a variety of mechanisms, including regular human movements among colonized islands. At present, this disease represents an ongoing threat to the birds on the Galapagos Islands

    Longitudinal monitoring of Ehrlichia ruminantium infection in Gambian lambs and kids by pCS20 PCR and MAP1-B ELISA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidemiology of <it>E. ruminantium </it>infection in extensively managed young animals is not adequately understood. Thus in this study, we monitored the onset (age at first infection) and kinetics of <it>E. ruminantium </it>infection and antibody response in extensively managed newborn lambs and kids at three sites in The Gambia.</p> <p>Methods</p> <p>We used a nested pCS20 PCR and MAP1-B ELISA in a longitudinal study to monitor the onset (age at first infection) and kinetics of <it>E. ruminantium </it>infection and antibody response respectively, in 77 newborn lambs and kids under a traditional husbandry system at three sites (Kerr Seringe, Keneba, Bansang) in The Gambia where heartwater is known to occur. The animals were monitored for field tick infestation and the comparative performance of the two assays in detecting <it>E. ruminantium </it>infection was also assessed.</p> <p>Results</p> <p>The infection rate detected by pCS20 PCR varied between 8.6% and 54.8% over the 162-day study period. Nineteen per cent of the animals in week 1 post-partum tested positive by pCS20 PCR with half of these infections (7/14) detected in the first 3 days after birth, suggesting that transmission other than by tick feeding had played a role. The earliest detectable <it>A. variegatum </it>infestation in the animals occurred in week 16 after birth. Antibodies detected by MAP1-B ELISA also varied, between 11.5% and 90%. Although there is considerable evidence that this assay can detect false positives and due to this and other reasons serology is not a reliable predictor of infection at least for heartwater. In contrast to the pCS20 PCR, the serological assay detected the highest proportion of positive animals in week 1 with a gradual decline in seropositivity with increasing age. The pCS20 PCR detected higher <it>E. ruminantium </it>prevalence in the animals with increasing age and both the Spearman's rank test (<it>r</it><sub><it>s </it></sub>= -0.1512; P = 0.003) and <it>kappa </it>statistic (-0.091 to 0.223) showed a low degree of agreement between the two assays.</p> <p>Conclusion</p> <p>The use of pCS20 PCR supported by transmission studies and clinical data could provide more accurate information on heartwater epidemiology in endemic areas and single-occasion testing of an animal may not reveal its true infection status. The view is supported because both the vector and vertical transmission may play a vital role in the epidemiology of heartwater in young small ruminants; the age range of 4 and 12 weeks corresponds to the period of increased susceptibility to heartwater in traditionally managed small ruminants.</p

    Does Pathogen Spillover from Commercially Reared Bumble Bees Threaten Wild Pollinators?

    Get PDF
    The conservation of insect pollinators is drawing attention because of reported declines in bee species and the ‘ecosystem services’ they provide. This issue has been brought to a head by recent devastating losses of honey bees throughout North America (so called, ‘Colony Collapse Disorder’); yet, we still have little understanding of the cause(s) of bee declines. Wild bumble bees (Bombus spp.) have also suffered serious declines and circumstantial evidence suggests that pathogen ‘spillover’ from commercially reared bumble bees, which are used extensively to pollinate greenhouse crops, is a possible cause. We constructed a spatially explicit model of pathogen spillover in bumble bees and, using laboratory experiments and the literature, estimated parameter values for the spillover of Crithidia bombi, a destructive pathogen commonly found in commercial Bombus. We also monitored wild bumble bee populations near greenhouses for evidence of pathogen spillover, and compared the fit of our model to patterns of C. bombi infection observed in the field. Our model predicts that, during the first three months of spillover, transmission from commercial hives would infect up to 20% of wild bumble bees within 2 km of the greenhouse. However, a travelling wave of disease is predicted to form suddenly, infecting up to 35–100% of wild Bombus, and spread away from the greenhouse at a rate of 2 km/wk. In the field, although we did not observe a large epizootic wave of infection, the prevalences of C. bombi near greenhouses were consistent with our model. Indeed, we found that spillover has allowed C. bombi to invade several wild bumble bee species near greenhouses. Given the available evidence, it is likely that pathogen spillover from commercial bees is contributing to the ongoing decline of wild Bombus in North America. Improved management of domestic bees, for example by reducing their parasite loads and their overlap with wild congeners, could diminish or even eliminate pathogen spillover

    Populations of a Susceptible Amphibian Species Can Grow despite the Presence of a Pathogenic Chytrid Fungus

    Get PDF
    Disease can be an important driver of host population dynamics and epizootics can cause severe host population declines. Batrachochytrium dendrobatidis (Bd), the pathogen causing amphibian chytridiomycosis, may occur epizootically or enzootically and can harm amphibian populations in many ways. While effects of Bd epizootics are well documented, the effects of enzootic Bd have rarely been described. We used a state-space model that accounts for observation error to test whether population trends of a species highly susceptible to Bd, the midwife toad Alytes obstetricans, are negatively affected by the enzootic presence of the pathogen. Unexpectedly, Bd had no negative effect on population growth rates from 2002–2008. This suggests that negative effects of disease on individuals do not necessarily translate into negative effects at the population level. Populations of amphibian species that are susceptible to the emerging disease chytridiomycosis can persist despite the enzootic presence of the pathogen under current environmental conditions

    A Serological Survey of Infectious Disease in Yellowstone National Park’s Canid Community

    Get PDF
    BACKGROUND:Gray wolves (Canis lupus) were reintroduced into Yellowstone National Park (YNP) after a >70 year absence, and as part of recovery efforts, the population has been closely monitored. In 1999 and 2005, pup survival was significantly reduced, suggestive of disease outbreaks. METHODOLOGY/PRINCIPAL FINDINGS:We analyzed sympatric wolf, coyote (Canis latrans), and red fox (Vulpes vulpes) serologic data from YNP, spanning 1991-2007, to identify long-term patterns of pathogen exposure, identify associated risk factors, and examine evidence for disease-induced mortality among wolves for which there were survival data. We found high, constant exposure to canine parvovirus (wolf seroprevalence: 100%; coyote: 94%), canine adenovirus-1 (wolf pups [0.5-0.9 yr]: 91%, adults [>or=1 yr]: 96%; coyote juveniles [0.5-1.5 yrs]: 18%, adults [>or=1.6 yrs]: 83%), and canine herpesvirus (wolf: 87%; coyote juveniles: 23%, young adults [1.6-4.9 yrs]: 51%, old adults [>or=5 yrs]: 87%) suggesting that these pathogens were enzootic within YNP wolves and coyotes. An average of 50% of wolves exhibited exposure to the protozoan parasite, Neospora caninum, although individuals' odds of exposure tended to increase with age and was temporally variable. Wolf, coyote, and fox exposure to canine distemper virus (CDV) was temporally variable, with evidence for distinct multi-host outbreaks in 1999 and 2005, and perhaps a smaller, isolated outbreak among wolves in the interior of YNP in 2002. The years of high wolf-pup mortality in 1999 and 2005 in the northern region of the park were correlated with peaks in CDV seroprevalence, suggesting that CDV contributed to the observed mortality. CONCLUSIONS/SIGNIFICANCE:Of the pathogens we examined, none appear to jeopardize the long-term population of canids in YNP. However, CDV appears capable of causing short-term population declines. Additional information on how and where CDV is maintained and the frequency with which future epizootics might be expected might be useful for future management of the Northern Rocky Mountain wolf population

    Spatial distribution and risk factors of Brucellosis in Iberian wild ungulates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of wildlife as a brucellosis reservoir for humans and domestic livestock remains to be properly established. The aim of this work was to determine the aetiology, apparent prevalence, spatial distribution and risk factors for brucellosis transmission in several Iberian wild ungulates.</p> <p>Methods</p> <p>A multi-species indirect immunosorbent assay (iELISA) using <it>Brucella </it>S-LPS antigen was developed. In several regions having brucellosis in livestock, individual serum samples were taken between 1999 and 2009 from 2,579 wild bovids, 6,448 wild cervids and4,454 Eurasian wild boar (<it>Sus scrofa</it>), and tested to assess brucellosis apparent prevalence. Strains isolated from wild boar were characterized to identify the presence of markers shared with the strains isolated from domestic pigs.</p> <p>Results</p> <p>Mean apparent prevalence below 0.5% was identified in chamois (<it>Rupicapra pyrenaica</it>), Iberian wild goat (<it>Capra pyrenaica</it>), and red deer (<it>Cervus elaphus</it>). Roe deer (<it>Capreolus capreolus</it>), fallow deer (<it>Dama dama</it>), mouflon (<it>Ovis aries</it>) and Barbary sheep (<it>Ammotragus lervia</it>) tested were seronegative. Only one red deer and one Iberian wild goat resulted positive in culture, isolating <it>B. abortus </it>biovar 1 and <it>B. melitensis </it>biovar 1, respectively. Apparent prevalence in wild boar ranged from 25% to 46% in the different regions studied, with the highest figures detected in South-Central Spain. The probability of wild boar being positive in the iELISA was also affected by age, age-by-sex interaction, sampling month, and the density of outdoor domestic pigs. A total of 104 bacterial isolates were obtained from wild boar, being all identified as <it>B. suis </it>biovar 2. DNA polymorphisms were similar to those found in domestic pigs.</p> <p>Conclusions</p> <p>In conclusion, brucellosis in wild boar is widespread in the Iberian Peninsula, thus representing an important threat for domestic pigs. By contrast, wild ruminants were not identified as a significant brucellosis reservoir for livestock.</p
    corecore