311 research outputs found

    Wrapping the alpha-crystallin domain fold in a chaperone assembly

    Get PDF
    Small heat shock proteins (sHsps) are oligomers that perform a protective function by binding denatured proteins. Although ubiquitous, they are of variable sequence except for a C-terminal similar to 90-residue "alpha-crystallin domain". Unlike larger stress response chaperones, sHsps are ATP-independent and generally form polydisperse assemblies. One proposed mechanism of action involves these assemblies breaking into smaller subunits in response to stress, before binding unfolding substrate and reforming into larger complexes. Two previously solved non-metazoan sHsp multimers are built from dimers formed by domain swapping between the alpha-crystallin domains,. adding to evidence that the smaller subunits are dimers. Here, the 2.5 angstrom resolution structure of an sHsp from the parasitic flatworm Taenia saginata Tsp36, the first metazoan crystal structure, shows a new mode of dimerization involving N-terminal regions, which differs from that seen for non-metazoan sHsps. Sequence differences in the a-crystallin domains between metazoans and nonmetazoans are critical to the different mechanism of dimerization, suggesting that some structural features seen for Tsp36 may be generalized to other metazoan sHsps. The structure also indicates scope for flexible assembly of subunits, supporting the proposed process of oligomer breakdown, substrate binding and reassembly as the chaperone mechanism. It further shows how sHsps can bind coil and secondary structural elements by wrapping them around the alpha-crystallin domain. The structure also illustrates possible roles for conserved residues associated with disease, and suggests a mechanism for the sHsp-related pathogenicity of some flatworm infections. Tsp36, like other flatworm sHsps, possesses two divergent sHsp repeats per monomer. Together with the two previously solved structures, a total of four alpha-crystallin domain structures are now available, giving a better definition of domain boundaries for sHsps

    Genetic Selection for Enhanced Folding In Vivo Targets the Cys14-Cys38 Disulfide Bond in Bovine Pancreatic Trypsin Inhibitor

    Full text link
    The periplasm provides a strongly oxidizing environment; however, periplasmic expression of proteins with disulfide bonds is often inefficient. Here, we used two different tripartite fusion systems to perform in vivo selections for mutants of the model protein bovine pancreatic trypsin inhibitor (BPTI) with the aim of enhancing its expression in Escherichia coli. This trypsin inhibitor contains three disulfides that contribute to its extreme stability and protease resistance. The mutants we isolated for increased expression appear to act by eliminating or destabilizing the Cys14-Cys38 disulfide in BPTI. In doing so, they are expected to reduce or eliminate kinetic traps that exist within the well characterized in vitro folding pathway of BPTI. These results suggest that elimination or destabilization of a disulfide bond whose formation is problematic in vitro can enhance in vivo protein folding. The use of these in vivo selections may prove a valuable way to identify and eliminate disulfides and other rate-limiting steps in the folding of proteins, including those proteins whose in vitro folding pathways are unknown. Antioxid. Redox Signal. 14, 973-984.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90494/1/ars-2E2010-2E3712.pd

    Crystal structure of Hfq from Bacillus subtilis in complex with SELEX-derived RNA aptamer: insight into RNA-binding properties of bacterial Hfq

    Get PDF
    Bacterial Hfq is a protein that plays an important role in the regulation of genes in cooperation with sRNAs. Escherichia coli Hfq (EcHfq) has two or more sites that bind RNA(s) including U-rich and/or the poly(A) tail of mRNA. However, functional and structural information about Bacillus subtilis Hfq (BsHfq) including the RNA sequences that specifically bind to it remain unknown. Here, we describe RNA aptamers including fragment (AG)3A that are recognized by BsHfq and crystal structures of the BsHfqā€“(AG)3A complex at 2.2ā€‰Ć… resolution. Mutational and structural studies revealed that the RNA fragment binds to the distal site, one of the two binding sites on Hfq, and identified amino acid residues that are critical for sequence-specific interactions between BsHfq and (AG)3A. In particular, R32 appears to interact with G bases in (AG)3A. Poly(A) also binds to the distal site of EcHfq, but the overall RNA structure and proteinā€“RNA interaction patterns engaged in the R32 residues of BsHfqā€“(AG)3A differ from those of EcHfqā€“poly(A). These findings provide novel insight into how the Hfq homologue recognizes RNA

    The Hexameric Structures of Human Heat Shock Protein 90

    Get PDF
    The human 90-kDa heat shock protein (HSP90) functions as a dimeric molecular chaperone. HSP90 identified on the cell surface has been found to play a crucial role in cancer invasion and metastasis, and has become a validated anti-cancer target for drug development. It has been shown to self-assemble into oligomers upon heat shock or divalent cations treatment, but the functional role of the oligomeric states in the chaperone cycle is not fully understood.Here we report the crystal structure of a truncated HSP90 that contains the middle segment and the carboxy-terminal domain, termed MC-HSP90. The structure reveals an architecture with triangular bipyramid geometry, in which the building block of the hexameric assembly is a dimer. In solution, MC-HSP90 exists in three major oligomer states, namely dimer, tetramer and hexamer, which were elucidated by size exclusion chromatography and analytical ultracentrifugation. The newly discovered HSP90 isoform HSP90N that lacks the N-terminal ATPase domain also exhibited similar oligomerization states as did MC-HSP90.While lacking the ATPase domain, both MC-HSP90 and HSP90N can self-assemble into a hexameric structure, spontaneously. The crystal structure of MC-HSP90 reveals that, in addition to the C-terminal dimerization domain, the residue W320 in the M domain plays a critical role in its oligomerization. This study not only demonstrates how the human MC-HSP90 forms a hexamer, but also justifies the similar formation of HSP90N by using 3D modeling analysis

    Structural Basis of PP2A Inhibition by Small t Antigen

    Get PDF
    The SV40 small t antigen (ST) is a potent oncoprotein that perturbs the function of protein phosphatase 2A (PP2A). ST directly interacts with the PP2A scaffolding A subunit and alters PP2A activity by displacing regulatory B subunits from the A subunit. We have determined the crystal structure of full-length ST in complex with PP2A A subunit at 3.1 ƅ resolution. ST consists of an N-terminal J domain and a C-terminal unique domain that contains two zinc-binding motifs. Both the J domain and second zinc-binding motif interact with the intra-HEAT-repeat loops of HEAT repeats 3ā€“7 of the A subunit, which overlaps with the binding site of the PP2A B56 subunit. Intriguingly, the first zinc-binding motif is in a position that may allow it to directly interact with and inhibit the phosphatase activity of the PP2A catalytic C subunit. These observations provide a structural basis for understanding the oncogenic functions of ST

    Structure and Reaction Mechanism of Basil Eugenol Synthase

    Get PDF
    Phenylpropenes, a large group of plant volatile compounds that serve in multiple roles in defense and pollinator attraction, contain a propenyl side chain. Eugenol synthase (EGS) catalyzes the reductive displacement of acetate from the propenyl side chain of the substrate coniferyl acetate to produce the allyl-phenylpropene eugenol. We report here the structure determination of EGS from basil (Ocimum basilicum) by protein x-ray crystallography. EGS is structurally related to the short-chain dehydrogenase/reductases (SDRs), and in particular, enzymes in the isoflavone-reductase-like subfamily. The structure of a ternary complex of EGS bound to the cofactor NADP(H) and a mixed competitive inhibitor EMDF ((7S,8S)-ethyl (7,8-methylene)-dihydroferulate) provides a detailed view of the binding interactions within the EGS active site and a starting point for mutagenic examination of the unusual reductive mechanism of EGS. The key interactions between EMDF and the EGS-holoenzyme include stacking of the phenyl ring of EMDF against the cofactor's nicotinamide ring and a water-mediated hydrogen-bonding interaction between the EMDF 4-hydroxy group and the side-chain amino moiety of a conserved lysine residue, Lys132. The C4 carbon of nicotinamide resides immediately adjacent to the site of hydride addition, the C7 carbon of cinnamyl acetate substrates. The inhibitor-bound EGS structure suggests a two-step reaction mechanism involving the formation of a quinone-methide prior to reduction. The formation of this intermediate is promoted by a hydrogen-bonding network that favors deprotonation of the substrate's 4-hydroxyl group and disfavors binding of the acetate moiety, akin to a push-pull catalytic mechanism. Notably, the catalytic involvement in EGS of the conserved Lys132 in preparing the phenolic substrate for quinone methide formation through the proton-relay network appears to be an adaptation of the analogous role in hydrogen bonding played by the equivalent lysine residue in other enzymes of the SDR family

    Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1

    Get PDF
    Polo-like kinase-1 (Plk1) has a pivotal role in cell proliferation and is considered a potential target for anticancer therapy. The noncatalytic polo-box domain (PBD) of Plk1 forms a phosphoepitope binding module for protein-protein interaction. Here, we report the identification of minimal phosphopeptides that specifically interact with the PBD of human PLK1, but not those of the closely related PLK2 and PLK3. Comparative binding studies and analyses of crystal structures of the PLK1 PBD in complex with the minimal phosphopeptides revealed that the C-terminal SpT dipeptide functions as a high-affinity anchor, whereas the N-terminal residues are crucial for providing specificity and affinity to the interaction. Inhibition of the PLK1 PBD by phosphothreonine mimetic peptides was sufficient to induce mitotic arrest and apoptotic cell death. The mode of interaction between the minimal peptide and PBD may provide a template for designing therapeutic agents that target PLK1.National Institutes of Health (U.S.) (Grant R01 GM60594)National Cancer Institute (U.S.)National Institutes of Health (U.S.) (Contract N01-CO-12400)National Institutes of Health (U.S.) (HHSN261200800001E

    Structure of a lectin from Canavalia gladiata seeds: new structural insights for old molecules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lectins are mainly described as simple carbohydrate-binding proteins. Previous studies have tried to identify other binding sites, which possible recognize plant hormones, secondary metabolites, and isolated amino acid residues. We report the crystal structure of a lectin isolated from <it>Canavalia gladiata </it>seeds (CGL), describing a new binding pocket, which may be related to pathogen resistance activity in ConA-like lectins; a site where a non-protein amino-acid, Ī±-aminobutyric acid (Abu), is bound.</p> <p>Results</p> <p>The overall structure of native CGL and complexed with Ī±-methyl-mannoside and Abu have been refined at 2.3 ƅ and 2.31 ƅ resolution, respectively. Analysis of the electron density maps of the CGL structure shows clearly the presence of Abu, which was confirmed by mass spectrometry.</p> <p>Conclusion</p> <p>The presence of Abu in a plant lectin structure strongly indicates the ability of lectins on carrying secondary metabolites. Comparison of the amino acids composing the site with other legume lectins revealed that this site is conserved, providing an evidence of the biological relevance of this site. This new action of lectins strengthens their role in defense mechanisms in plants.</p

    Novel protein fold discovered in the PabI family of restriction enzymes

    Get PDF
    Although structures of many DNA-binding proteins have been solved, they fall into a limited number of folds. Here, we describe an approach that led to the finding of a novel DNA-binding fold. Based on the behavior of Type II restrictionā€“modification gene complexes as mobile elements, our earlier work identified a restriction enzyme, R.PabI, and its cognate modification enzyme in Pyrococcus abyssi through comparison of closely related genomes. While the modification methyltransferase was easily recognized, R.PabI was predicted to have a novel 3D structure. We expressed cytotoxic R.PabI in a wheat-germ-based cell-free translation system and determined its crystal structure. R.PabI turned out to adopt a novel protein fold. Homodimeric R.PabI has a curved anti-parallel Ī²-sheet that forms a ā€˜half pipeā€™. Mutational and in silico DNA-binding analyses have assigned it as the double-strand DNA-binding site. Unlike most restriction enzymes analyzed, R.PabI is able to cleave DNA in the absence of Mg2+. These results demonstrate the value of genome comparison and the wheat-germ-based system in finding a novel DNA-binding motif in mobile DNases and, in general, a novel protein fold in horizontally transferred genes
    • ā€¦
    corecore