5,736 research outputs found

    Enabling the Autonomic Management of Federated Identity Providers

    Get PDF
    The autonomic management of federated authorization infrastructures (federations) is seen as a means for improving the monitoring and use of a service provider’s resources. However, federations are comprised of independent management domains with varying scopes of control and data ownership. The focus of this paper is on the autonomic management of federated identity providers by service providers located in other domains, when the identity providers have been diagnosed as the source of abuse. In particular, we describe how an autonomic controller, external to the domain of the identity provider, exercises control over the issuing of privilege attributes. The paper presents a conceptual design and implementation of an effector for an identity provider that is capable of enabling cross-domain autonomic management. The implementation of an effector for a SimpleSAMLphp identity provider is evaluated by demonstrating how an autonomic controller, together with the effector, is capable of responding to malicious abuse

    Dual Screening the Political:Media Events, Social Media, and Citizen Engagement

    Get PDF
    Dual screening—the complex bundle of practices that involve integrating, and switching across and between, live broadcast media and social medi—is now routine for many citizens during important political media events. But do these practices shape political engagement, and if so, why? We devised a unique research design combining a large-scale Twitter dataset and a custom-built panel survey focusing on the broadcast party leaders’ debates held during the 2014 European Parliament elections in the United Kingdom. We find that relatively active, “lean-forward” practices, such as commenting live on social media as the debate unfolded, and engaging with conversations via Twitter hashtags, have the strongest and most consistent positive associations with political engagement

    Majorana and the quasi-stationary states in Nuclear Physics

    Get PDF
    A complete theoretical model describing artificial disintegration of nuclei by bombardment with alpha-particles, developed by Majorana as early as in 1930, is discussed in detail alongside the basic experimental evidences that motivated it. By following the quantum dynamics of a state resulting from the superposition of a discrete state with a continuum one, whose interaction is described by a given potential term, Majorana obtained (among the other predictions) the explicit expression for the integrated cross section of the nuclear process, which is the direct measurable quantity of interest in the experiments. Though this is the first application of the concept of quasi-stationary states to a Nuclear Physics problem, it seems also that the unpublished Majorana's work anticipates by several years the related seminal paper by Fano on Atomic Physics.Comment: latex, amsart, 13 page

    Photohadronic modelling of the 2010 gamma-ray flare from Mrk 421

    Get PDF
    Blazars are a subclass of active galactic nuclei (AGNs) that have a relativistic jet with a small viewing angle towards the observer. Recent results based on hadronic scenarios have motivated an ongoing discussion of how a blazar can produce high energy neutrinos during a flaring state and which scenario can successfully describe the observed gamma-ray behaviour. Markarian 421 is one of the closest and brightest objects in the extragalactic gamma-ray sky and showed flaring activity over a 14-days period in 2010 March. In this work, we describe the performed analysis of Fermi-LAT data from the source focused on the MeV range (100 MeV–1 GeV), and study the possibility of a contribution coming from the pγ interactions between protons and MeV SSC target photons to fit the very high energy (VHE) gamma-ray emission. The fit results were compared with two leptonic models (one-zone and two-zone) using the Akaike Information Criteria (AIC) test, which evaluates goodness-of-fit alongside the simplicity of the model. In all cases, the photohadronic model was favoured as a better fit description in comparison to the one-zone leptonic model, and with respect to the two-zone model in the majority of cases. Our results show the potential of a photohadronic contribution to a lepto-hadronic origin of gamma-ray flux of blazars. Future gamma-ray observations above tens of TeV and below 100 MeV in energy will be crucial to test and discriminate between models

    Characterization of an INVS Model IV Neutron Counter for High Precision (Îł,n\gamma,n) Cross-Section Measurements

    Full text link
    A neutron counter designed for assay of radioactive materials has been adapted for beam experiments at TUNL. The cylindrical geometry and 60% maximum efficiency make it well suited for (γ,n\gamma,n) cross-section measurements near the neutron emission threshold. A high precision characterization of the counter has been made using neutrons from several sources. Using a combination of measurements and simulations, the absolute detection efficiency of the neutron counter was determined to an accuracy of ±\pm 3% in the neutron energy range between 0.1 and 1 MeV. It is shown that this efficiency characterization is generally valid for a wide range of targets.Comment: 22 pages, 13 figure

    Neutrinos from the pulsar wind nebulae

    Full text link
    In the recent paper we calculated the Îł\gamma-ray spectra from pulsar wind nebulae (PWNe), assuming that a significant amount of the pulsar rotational energy is converted into relativistic nuclei. These nuclei accelerate leptons which are responsible for most of the observed electromagnetic emission from PWNe. Small part of nuclei also interact with the matter of the supernova producing Îł\gamma-rays, which can also contribute to the observed spectra of young nebulae. Here we calculate the spectra of neutrinos from the interaction of nuclei inside the nebula and the expected neutrino event rates in the 1 km2^2 neutrino detector from: the Crab Nebula (PSR 0531+21), the Vela SNR (PSR 0833-45), G 343.1-2.3 (PSR 1706-44), MSH15-52 (PSR 1509-58), 3C58 (PSR J0205+6449), and CTB80 (PSR 1951+32). It is shown that only the Crab Nebula can produce the neutrino event rate above the sensitivity limit of the 1 km2^2 neutrino detector, provided that nuclei take most of the rotational energy lost by the pulsar. The neutrino event rate expected from the Vela SNR is comparable to that from the Crab Nebula but these neutrinos are less energetic and emitted from a much larger region on the sky. Therefore it may be difficult to subtract the Vela SNR signal from the higher background of the atmospheric neutrinos.Comment: 7 pages, 3 figures, A&A style, accepted to A&

    X-rays and Gamma-rays from Cataclysmic Variables: The example case of Intermediate Polar V1223 Sgr

    Full text link
    The accretion of matter onto intermediate polar White Dwarfs (IPWDs) seems to provide attractive conditions for acceleration of particles to high energies in a strongly magnetized turbulent region at the accretion disk inner radius. We consider possible acceleration of electrons and hadrons in such region and investigate their high energy radiation processes. It is concluded that accelerated electrons loose energy mainly on synchrotron process producing non-thermal X-ray emission. On the other hand, accelerated hadrons are convected onto the WD surface and interact with dense matter. As a result, high energy Îł\gamma-rays from decay of neutral pions and secondary leptons from decay of charged pions appear. We show that GeV-TeV Îł\gamma-rays can escape from the vicinity of the WD. Secondary leptons produce synchrotron radiation in the hard X-rays and soft Îł\gamma-rays. As an example, we predict the X-ray and Îł\gamma-ray emission from IPWD V1223 Sgr. Depending on the spectral index of injected particles, this high energy emission may be detected by the Fermi{\it Fermi}-LAT telescope and/or the future Cherenkov Telescope Array (CTA) observatory.Comment: 16 pages, 1 figure, accepted to MNRA

    TeV neutrinos and gamma rays from pulsars

    Full text link
    Recent studies suggest that pulsars could be strong sources of TeV muon neutrinos provided positive ions are accelerated by pulsar polar caps to PeV energies. In such a situation muon neutrinos are produced through the delta resonance in interactions of pulsar accelerated ions with its thermal radiation field. High energy gamma rays also should be produced simultaneously in pulsar environment as both charged and neutral pions are generated in the interactions of energetic hadrons with the ambient photon fields. Here we estimate TeV gamma ray flux at Earth from few nearby young pulsars. When compared with the observations we find that proper consideration of the effect of polar cap geometry in flux calculation is important. Incorporating such an effect we obtain the (revised) event rates at Earth due to few potential nearby pulsars. The results suggest that pulsars are unlikely to be detected by the upcoming neutrino telescopes. We also estimate TeV gamma ray and neutrino fluxes from pulsar nebulae for the adopted model of particle acceleration.Comment: Six pages, accepted in MNRA
    • 

    corecore