35,051 research outputs found
Rigidly Rotating Strings in Stationary Spacetimes
In this paper we study the motion of a rigidly rotating Nambu-Goto test
string in a stationary axisymmetric background spacetime. As special examples
we consider the rigid rotation of strings in flat spacetime, where explicit
analytic solutions can be obtained, and in the Kerr spacetime where we find an
interesting new family of test string solutions. We present a detailed
classification of these solutions in the Kerr background.Comment: 19 pages, Latex, 9 figures, revised for publication in Classical and
Quantum Gravit
Quantum integrability of quadratic Killing tensors
Quantum integrability of classical integrable systems given by quadratic
Killing tensors on curved configuration spaces is investigated. It is proven
that, using a "minimal" quantization scheme, quantum integrability is insured
for a large class of classic examples.Comment: LaTeX 2e, no figure, 35 p., references added, minor modifications. To
appear in the J. Math. Phy
Search Tracker: Human-derived object tracking in-the-wild through large-scale search and retrieval
Humans use context and scene knowledge to easily localize moving objects in
conditions of complex illumination changes, scene clutter and occlusions. In
this paper, we present a method to leverage human knowledge in the form of
annotated video libraries in a novel search and retrieval based setting to
track objects in unseen video sequences. For every video sequence, a document
that represents motion information is generated. Documents of the unseen video
are queried against the library at multiple scales to find videos with similar
motion characteristics. This provides us with coarse localization of objects in
the unseen video. We further adapt these retrieved object locations to the new
video using an efficient warping scheme. The proposed method is validated on
in-the-wild video surveillance datasets where we outperform state-of-the-art
appearance-based trackers. We also introduce a new challenging dataset with
complex object appearance changes.Comment: Under review with the IEEE Transactions on Circuits and Systems for
Video Technolog
The XMM-Newton EPIC Background and the production of Background Blank Sky Event Files
We describe in detail the nature of XMM-Newton EPIC background and its
various complex components, summarising the new findings of the XMM-Newton EPIC
background working group, and provide XMM-Newton background blank sky event
files for use in the data analysis of diffuse and extended sources. Blank sky
event file data sets are produced from the stacking of data, taken from 189
observations resulting from the Second XMM-Newton Serendipitous Source
Catalogue (2XMMp) reprocessing. The data underwent several filtering steps,
using a revised and improved method over previous work, which we describe in
detail. We investigate several properties of the final blank sky data sets. The
user is directed to the location of the final data sets. There is a final data
set for each EPIC instrument-filter-mode combination.Comment: Paper accepted by A&A 22 December 2006. 14 pages, 8 figures. Paper
can also be found at http://www.star.le.ac.uk/~jac48/publications
Propagation of perturbations along strings
A covariant formalism for physical perturbations propagating along a string
in an arbitrary curved spacetime is developed. In the case of a stationary
string in a static background the propagation of the perturbations is described
by a wave-equation with a potential consisting of 2 terms: The first term
describing the time-dilation and the second is connected with the curvature of
space. As applications of the developed approach the propagation of
perturbations along a stationary string in Rindler, de Sitter, Schwarzschild
and Reissner-Nordstrom spacetimes are investigated.Comment: 18 pages, LaTeX, Nordita-93/17
Critical Points in the QCD Phase Diagram with Two Flavors of Quarks
We employ the linear sigma model to study the chiral dynamics of two flavors
of quarks at finite temperature and density. Our calculations include thermal
fluctuations of both the bosonic and fermionic fields. In particular, we
determine the phase diagram in the plane of temperature and baryon chemical
potential as a function of the pion mass. An interesting phase structure occurs
that results in zero, one, or two critical points depending on the value of the
vacuum pion mass.Comment: 4 pages, Quark Matter 2009 proceeding
MHC-I genotype drives early immune selection of oncogenic mutations.
MHC-I exposes the intracellular contents to immune cells for surveillance of cellular health. Due to high genomic variation, individuals' immune systems differ in their ability to expose and eliminate cancer-causing mutations. These personalized immune blind spots create specific oncogenic mutation predispositions within patients and influence their prevalence across populations
Fermionic massive modes along cosmic strings
The influence on cosmic string dynamics of fermionic massive bound states
propagating in the vortex, and getting their mass only from coupling to the
string forming Higgs field, is studied. Such massive fermionic currents are
numerically found to exist for a wide range of model parameters and seen to
modify drastically the usual string dynamics coming from the zero mode currents
alone. In particular, by means of a quantization procedure, a new equation of
state describing cosmic strings with any kind of fermionic current, massive or
massless, is derived and found to involve, at least, one state parameter per
trapped fermion species. This equation of state exhibits transitions from
subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for
publication in Phys. Rev.
Cooperative mixing induced surface roughening in bilayer metals: a possible novel surface damage mechanism
Molecular dynamics simulations have been used to study a collective atomic
transport phenomenon by repeated Ar irradiations in the Ti/Pt interfacial
system. The ion-induced injection of surface atoms to the bulk, the ejection of
bulk atoms to the top layers together with surface erosion is strongly enhanced
by interfacial mixing. This process leads to a dense interfacial material, and
broadening of the interface region. The process scales with the relative
difference of the atomic masses. We find that surface roughening and
interfacial mixing is strongly coupled via an enhanced counterflow material
transport normal to the surface which might be a novel surface damage
mechanism. This cooperative phenomenon is active when the bilayer system is
subjected to a high dose ion irradiation (multiple ion irradiations) and leads
to surface cavity growth.Comment: 6 pages, 6 figures. accepted in Nucl. Instrum. Meth.
Impact of schizophrenia on anterior and posterior hippocampus during memory for complex scenes.
ObjectivesHippocampal dysfunction has been proposed as a mechanism for memory deficits in schizophrenia. Available evidence suggests that the anterior and posterior hippocampus could be differentially affected. Accordingly, we used fMRI to test the hypothesis that activity in posterior hippocampus is disproportionately reduced in schizophrenia, particularly during spatial memory retrieval.Methods26 healthy participants and 24 patients with schizophrenia from the UC Davis Early Psychosis Program were studied while fMRI was acquired on a 3 Tesla Siemens scanner. During encoding, participants were oriented to critical items through questions about item features (e.g., "Does the lamp have a square shade?") or spatial location (e.g., "Is the lamp on the table next to the couch?"). At test, participants determined whether scenes were changed or unchanged. fMRI analyses contrasted activation in a priori regions of interest (ROI) in anterior and posterior hippocampus during correct recognition of item changes and spatial changes.ResultsAs predicted, patients with schizophrenia exhibited reduced activation in the posterior hippocampus during detection of spatial changes but not during detection of item changes. Unexpectedly, patients exhibited increased activation of anterior hippocampus during detection of item changes. Whole brain analyses revealed reduced fronto-parietal and striatal activation in patients for spatial but not for item change trials.ConclusionsResults suggest a gradient of hippocampal dysfunction in which posterior hippocampus - which is necessary for processing fine-grained spatial relationships - is underactive, and anterior hippocampus - which may process context more globally - is overactive
- …
