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1 Introduction

One of the main goals of this article is to present a somewhat general framework

for the quantization of classical observables on a cotangent bundle which are poly-

nomials at most cubic in momenta. This approach enables us to investigate the

quantization of classically Poisson-commuting observables, and hence to tackle the

problem of quantum integrability for a reasonably large class of dynamical systems.

What should actually be the definition of quantum integrability is a long stand-

ing issue, see, e.g., [37]. The point of view espoused in this paper is the following.

Start with a complete set of independent Poisson-commuting classical observables,

and use some quantization rule to get a corresponding set of quantum observables;

if these operators appear to be still in involution with respect to the commutator,

the system will be called integrable at the quantum level.

Our work can be considered as a sequel to earlier and pioneering contributions

[11, 4, 5, 22, 34] that provide worked examples of persistence of integrability from the

classical to the quantum regime. The general approach we deal with in this paper

helps us to highlight the general structure of quantum corrections and to show that

the latter actually vanish in most, yet not all, interesting examples.

Returning to the general issue of quantization, let us mention that our choice

of quantization procedure, which we might call “minimal”, doesn’t stem from first

principles, e.g., from invariance or equivariance requirements involving some specific

symmetry. Although this “minimal” quantization only applies to low degree polyno-

mials on cotangent bundles, it has the virtue of leading automatically to the simplest

symmetric operators that guarantee quantum integrability in many cases. In order

to provide the explicit form of the quantization scheme, hence of the quantum correc-

tions, we need a symmetric linear connection be given on the base of our cotangent

bundle. In most examples where a (pseudo-)Riemannian metric is considered from

the outset, this connection will be chosen as the Levi-Civita connection.

To exemplify our construction, we consider a number of examples of classical

integrable systems together with their quantization. For instance, our approach

for dealing with quantum integrability in somewhat general terms allowed us to

deduce the quantum integrability of the Hamiltonian flow for the generalized Kerr-

Newman solution of the Einstein-Maxwell equations with a cosmological constant

first discovered by Carter [9, 10, 11]. Also does our quantization scheme leads us

to an independent proof of the quantum integrability for Stäckel systems originally
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due to Benenti, Chanu and Rastelli [4, 5].

The paper is organised as follows. In Section 2 we gather the definitions of the

Schouten bracket of symmetric contravariant tensor fields on configuration space,

M . We make use of Souriau’s procedure to present, in a manifestly gauge invariant

fashion, the minimal coupling to an external electromagnetic field; this enables us

to provide a geometric definition of the so called Schouten-Maxwell bracket. The

related definitions of Killing and Killing-Maxwell tensors follow naturally and will

be used throughout the rest of the paper. We recall the basics of classical integrable

systems, with emphasis on the Stäckel class. The main objective of the present

Section is then to revisit some classic examples of integrable systems involving Killing

tensors. Naturally starting with the Jacobi system on the ellipsoid, we prove, en

passant, that it is locally of the Stäckel type, even allowing for an extra harmonic

potential. This extends previous work of Benenti [3] related to the geodesic flow of

the ellipsoid. Similarly, we show that the Neumann system is also locally Stäckel.

A number of additional examples, not of Stäckel type, e.g., the Di Pirro system,

and the geodesic flow on various (pseudo-)Riemannian manifolds such as the Kerr-

Newman-de Sitter solution and the Multi-Centre solution are also considered.

We introduce, in Section 3, a specific “minimal” quantization scheme for ob-

servables at most cubic in momenta on the cotangent bundle T ∗M of a smooth

manifold M endowed with a symmetric connection ∇, extending a previous pro-

posal [11]. This quantization mapping is shown to be equivariant with respect to

the affine group of (M,∇). The computation of the commutators of quantum ob-

servables is then carried out and yields explicit expressions for quantum corrections.

We also provide the detailed analysis of quantum integrability for a wide class of

examples within the above list.

The concluding section includes a discussion and brings together several remarks

about the status of the “minimal” quantization that has been abstracted from the

various examples dealt with in this paper. It also opens some prospects for future

investigations related to quantum integrability in the spirit of this work.

Acknowledgements: We are indebted to Daniel Bennequin for several very

interesting remarks, and to Brandon Carter for fruitful correspondence. Special

thanks are due to Valentin Ovsienko for a careful reading of the manuscript together

with a number of most enlightening suggestions.
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2 Classical integrable systems

2.1 Killing tensors

Let us start with the definition of the Schouten bracket of two polynomial functions

on the cotangent bundle (T ∗M,ω = dξi∧dxi) of a smooth manifoldM . Consider two

such homogeneous polynomials P = P i1...ik(x)ξi1 . . . ξik and Q = Qi1...iℓ(x)ξi1 . . . ξiℓ
of degree k and ℓ respectively; we will identify these polynomials with the corre-

sponding smooth symmetric contravariant tensor fields P ♯ = P i1...ik(x)∂i1 ⊗· · ·⊗∂ik

and Q♯ = Qi1...iℓ(x)∂i1 ⊗ · · · ⊗ ∂iℓ .

The Schouten bracket [P ♯, Q♯]S of the two contravariant symmetric tensors P ♯

and Q♯ (of degree k and ℓ respectively) is the symmetric contravariant (k + ℓ− 1)-

tensor corresponding to the Poisson bracket of P and Q, namely

[P ♯, Q♯]S = {P,Q}♯. (2.1)

Using the the Poisson bracket {P,Q} = ∂ξi
P∂iQ−∂ξi

Q∂iP , and (2.1), we readily

get the local expression of the Schouten bracket of P ♯ and Q♯. If the manifold M is

endowed with a symmetric connection ∇, the latter can be written as1

[P ♯, Q♯]
i1...ik+ℓ−1

S = k P i(i1...ik−1∇iQ
ik ...ik+ℓ−1) − ℓQi(i1...iℓ−1∇iP

iℓ...ik+ℓ−1). (2.2)

If M is, in addition, equipped with a (pseudo-)Riemannian metric, g, we denote

by

H = 1

2
gijξiξj (2.3)

the Hamiltonian function associated with this structure. The Hamiltonian flow

associated with H is nothing but the geodesic flow on T ∗M .

A symmetric contravariant tensor field P ♯ of degree k satisfying {H,P} = 0 is

called a Killing (or Killing-Stäckel) tensor; using now the Levi-Civita connection ∇

in (2.2), this condition reads

∇(iP i1...ik) = 0. (2.4)

1In this article the round (resp. square) brackets will denote symmetrization (resp. skew-
symmetrization) with the appropriate combinatorial factor.
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2.2 Killing-Maxwell tensors

2.2.1 Souriau’s coupling

In the presence of an electromagnetic field, F , Souriau [33] has proposed to replace

the canonical symplectic structure, ω, of T ∗M by the twisted symplectic structure

ωF = dξi ∧ dxi + 1

2
Fijdx

i ∧ dxj . The (gauge-invariant) Poisson bivector now reads

πF = ∂ξi
∧ ∂i − 1

2
Fij ∂ξi

∧ ∂ξj
.

The Poisson bracket of two observables P,Q of T ∗M is now

{P,Q}F = πF (dP, dQ) = ∂ξi
P∂iQ− ∂ξi

Q∂iP − Fij ∂ξi
P ∧ ∂ξj

Q, (2.5)

and the Schouten-Maxwell bracket of two polynomials P and Q is then defined by

[P ♯, Q♯]S,F = {P,Q}♯
F .

If the manifold M is endowed with a symmetric connection ∇, the Schouten-

Maxwell bracket takes on the following form

[P ♯, Q♯]S,F = [P ♯, Q♯]
i1...ik+ℓ−1

S ∂i1 ⊗ · · · ⊗ ∂ik+ℓ−1

−kℓ FijP
i(i1...ik−1 Qik ...ik+ℓ−2)j∂i1 ⊗ · · · ⊗ ∂ik+ℓ−2

(2.6)

with the expression (2.2) of the Schouten bracket [ · , · ]S.

Suppose now that the manifold M is endowed with a metric g; the Hamiltonian

vector field on (T ∗M,ωF ) for the HamiltonianH given by (2.3) yields the the Lorentz

equations of motions for a charged test particle moving on (M, g) under the influence

of an external electromagnetic field F .

A symmetric contravariant tensor field P ♯ of degree k on (M, g) is now called

a Killing-Maxwell tensor if {H,P}F = 0. The Killing-Maxwell equations then read,

using (2.6),

∇(iP i1...ik) = 0 & P i(i1...ik−1 F
ik)
i = 0 (2.7)

where F j
i = gjmFmi, in accordance with previous results [11] obtained with a slightly

different standpoint.

The conditions (2.7) are of special importance for proving the classical and

quantum integrability of the equations of motion of a charged test particle in the

generalized Kerr-Newman background.

5



2.2.2 Standard electromagnetic coupling

A more traditional, though equivalent, means to deal with the coupling to an elec-

tromagnetic field, F = dA (locally), is to keep the canonical 1-form, α = ξidx
i, on

T ∗M unchanged, and hence to work with the original Poisson bracket {·, ·}, but to

replace the Hamiltonian (2.3) by

H̃ = 1

2
gij(ξi −Ai)(ξj − Aj) (2.8)

where the tilde makes it clear that the expressions to consider are actually polyno-

mials in the variables ξi − Ai, for i = 1, . . . , n; for example, if P = P i1···ikξi1 . . . ξik ,

then

P̃ = P i1...ik(ξi1 − Ai1) . . . (ξik − Aik). (2.9)

The equations of motion given by the Hamiltonian vector field for the Hamil-

tonian (2.8) on (T ∗M, dα) are, again, the Lorentz equations of motion.

The Schouten-Maxwell brackets and Schouten brackets for the electromagnetic

coupling are related as follows via the corresponding Poisson brackets, viz

{P,Q}F = {P̃ , Q̃}.

In this framework, a Killing-Maxwell tensor, P ♯, of degree k on (M, g) is defined

by the equation {H̃, P̃} = 0. The resulting constraints are, again, given by (2.7).

From now on, and in order to simplify the notation, we will omit the ♯-superscript

and use the same symbol for symmetric contravariant tensors and the corresponding

polynomial functions on T ∗M .

2.3 General definition of classical integrability

Let us recall that a dynamical system (M, ω,H) is (Liouville) integrable if there

exist n = 1

2
dimM independent Poisson-commuting functions P1, . . . , Pn ∈ C∞(M)

— that is dP1 ∧ · · · ∧ dPn 6= 0 and {Pk, Pℓ} = 0 for all k, ℓ = 1, . . . , n — such that

P1 = H .

We will, in the sequel, confine considerations to the case of cotangent bundles,

(M = T ∗M,ω = dθ) where θ is the canonical 1-form, and of polynomial functions,

P1, . . . , Pn, on T ∗M , that is to the case of n Schouten-commuting Killing tensors.

Moreover, all examples that we will consider will be given by polynomials of degree

two or three.
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2.4 The Stäckel systems

These systems on (T ∗M,ω = dξi ∧ dxi) are governed by the Hamiltonians

H =
n∑

i=1

ai(x)
(

1

2
ξ2
i + fi(x

i)
)

(2.10)

where the i-th function fi depends on the coordinate xi only, and the functions ai

are defined as follows. Let B denote a GL(n,R)-valued function defined on M and

such that

B(x) = (B1(x
1)B2(x

2) . . . Bn(xn))

where the i-th column Bi(x
i) depends on xi only (i = 1, . . . , n); such a matrix will

be called a Stäckel matrix. Then take

a(x) =



a1(x)

...
an(x)




to be the first column A1(x) of the matrix A(x) = B(x)−1.

The integrability of such a system follows from the existence of n quadratic

polynomials

Iℓ =
n∑

i=1

Ai
ℓ(x)

(
1

2
ξ2
i + fi(x

i)
)
, ℓ = 1, . . . , n, H = I1. (2.11)

We call Stäckel potential every function of the form

Uℓ(x) =
n∑

i=1

Ai
ℓ(x)fi(x

i), ℓ = 1, . . . , n; (2.12)

the potential appearing in the Hamiltonian is just U1.

One can check (see, e.g., [28], p. 101) that the n independent quantities Iℓ are

such that

{Iℓ, Im} =
n∑

s,t=1

(As
ℓ ∂sA

t
m − As

m ∂sA
t
ℓ)ξs

(
1

2
ξ2
t + ft

)
, ℓ 6= m.

The relation A = B−1, gives the useful identity2

∂kA
i
j = −Ci

k A
k
j , Ci

k =

n∑

s=1

Ai
s

dBs
k

dxk
, (2.13)

2The Einstein summation convention is not used.
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which implies

As
ℓ ∂sA

t
m − As

m ∂sA
t
ℓ = 0, ℓ 6= m, s, t = 1, . . . , n (2.14)

and therefore the so defined Stäckel systems are classically integrable.

Remark 2.1. Let us mention an interesting result due to Pars (see [28], p. 102):

for a system whose Hamiltonian is of the form (2.10), the Hamilton-Jacobi equation

is separable if and only if this system is Stäckel.

Although these systems constitute quite a large class of integrable systems, they

do not exhaust the full class. A simple example of a non-Stäckel integrable system

was produced by Di Pirro (see Section 2.9).

2.5 The Jacobi integrable system on the ellipsoid

Let E ⊂ Rn+1 be the n-dimensional ellipsoid defined by the equation Q0(y, y) = 1

where we define, for y, z ∈ Rn+1,

Qλ(y, z) =
n∑

α=0

yαzα

aα − λ
, (2.15)

with 0 < a0 < a1 < . . . < an; the equations Qλ(y, y) = 1 define a family of confocal

quadrics.

It has been proved by Jacobi (in the case n = 2) that the differential equations

governing the geodetic motions on the ellipsoid, E , form an integrable system. The

same remains true if a quadratic potential is admitted (see [27]). The Hamiltonian

of the system, prior to reduction, reads

H(p, y) =
1

2

n∑

α=0

p2
α +

a

2

n∑

α=0

y2
α (2.16)

where p, y ∈ Rn+1 and a is some real parameter.

Moser has shown [26] that the following polynomial functions

Fα(p, y) = p2
α + ay2

α +
∑

β 6=α

(pαyβ − pβyα)2

aα − aβ
with α = 0, 1, . . . , n, (2.17)

are in involution on (T ∗Rn+1,
∑n

α=0 dpα ∧ dyα). Those will generate the commuting

first integrals of the Jacobi dynamical system on the cotangent bundle T ∗E of the

ellipsoid.
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Our goal is to deduce from the knowledge of (2.17) the independent quantities

in involution I1, . . . , In on (T ∗E , dξi ∧ dxi) from the symplectic embedding

ι : T ∗E →֒ T ∗Rn+1

given by Z1(p, y) = Q0(y, y)− 1 = 0 and Z2(p, y) = Q0(p, y) = 0.

Proposition 2.2. The restrictions Fα|T ∗E = Fα ◦ ι of the functions (2.17) Poisson-

commute on T ∗E .

Proof. We get, using Dirac brackets,

{Fα|T ∗E , Fβ|T ∗E} = {Fα, Fβ}|T ∗E

−
1

{Z1, Z2}
[{Z1, Fα}{Z2, Fβ} − {Z1, Fβ}{Z2, Fα}] |T ∗E

(2.18)

for second-class constraints. Now, the denominator {Z1, Z2} = −2
∑n

α=0 (yα/aα)2

doesn’t vanish while {Z1, Fα} = 4(pαyα/aα)Z1 − 4(y2
α/aα)Z2 is zero on T ∗E , for all

α = 0, ..., n. The fact that {Fα, Fβ} = 0 completes the proof.

The reduced Hamiltonian for the Jacobi system on the ellipsoid E is plainly

H =
1

2

n∑

α=0

(
p2

α + ay2
α

)∣∣∣
T ∗E

=
1

2

n∑

α=0

Fα

∣∣∣
T ∗E

. (2.19)

In order to provide explicit expressions for the function in involution I1, . . . , In,

we resort to Jacobi ellipsoidal coordinates x1, . . . , xn on E . Those are defined by

Qλ(y, y) = 1 −
λUx(λ)

V (λ)
(2.20)

where

Ux(λ) =

n∏

i=1

(λ− xi) and V (λ) =

n∏

α=0

(λ− aα) (2.21)

and are such that a0 < x1 < a1 < x2 < . . . < xn < an. The induced metric,

g =
∑n

i,j=1 gij(x)dx
idxj , of the ellipsoid E is given by

gij(x) =
1

4

n∑

α=0

y2
α

(aα − xi)(aα − xj)
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and retains the form [26]

g =

n∑

i=1

gi(x)(dx
i)2 where gi(x) = −

xi

4

U ′
x(x

i)

V (xi)
(2.22)

which is actually Riemannian because of the previous inequalities. We put for

convenience gi(x) = 1/gi(x).

Using (2.20) and (2.21), we find the local expressions yα(x) via the formula

y2
α = aα

n∏

i=1

(aα − xi)

∏

β 6=α

(aα − aβ)
(2.23)

and then obtain the constrained coordinate functions

pα(ξ, x) = − 1

2
yα

n∑

i=1

gi(x)ξi
(aα − xi)

(2.24)

given by the induced canonical 1-form
∑n

i=1 ξi dx
i = ι∗ (

∑n
α=0 pαdyα).

The Hamiltonian (2.19) on (T ∗E , dξi ∧ dxi) is then found to be

H =
1

2

n∑

i=1

gi(x)ξ2
i +

a

2

[
n∑

α=0

aα −
n∑

i=1

xi

]
. (2.25)

Note that the potential term is obtained from the large λ behaviour

Qλ(y, y) ∼
1

λ

n∑

α=0

y2
α +

1

λ2

n∑

α=0

aαy
2
α + · · ·

which can be computed using relation (2.20). One gets

Qλ(y, y) ∼
1

λ

[
n∑

α=0

aα −
n∑

i=1

xi

]
+ · · ·

One relates the conserved quantities (2.17) to their reduced expressions on T ∗E

by computing, using (2.24) and (2.23), the expression of Fα|T ∗E . One gets the
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Proposition 2.3. The Moser conserved quantities (Fα|T ∗E)α=0,...,n retain the form

Fα|T ∗E =
aαGaα

(ξ, x)∏

β 6=α

(aα − aβ)

where

Gλ(ξ, x) =
n∑

i=1

gi(x)
∏

j 6=i

(λ− xj)ξ2
i + a

n∏

i=1

(λ− xi). (2.26)

It is useful to introduce the notation σi
k(x) for the symmetric functions of order

k = 0, 1, . . . , n−1 of the variables (x1, . . . , xn), with the exclusion of index i, namely

∏

j 6=i

(λ− xj) =
n∑

k=1

(−1)k−1λn−kσi
k−1(x). (2.27)

We note that, from the above definition, σi
0(x) = 1.

It is also worthwhile to introduce other symmetric functions, σk(x), via

n∏

j=1

(λ− xj) =

n∑

k=0

(−1)kλn−kσk(x). (2.28)

We thus have

Gλ(ξ, x) =
n∑

i=1

(−1)i−1λn−iIi(ξ, x) + a(−λ)n (2.29)

where the independent functions Ii (i = 1, . . . , n) are in involution and can be

written as

Ii(ξ, x) =
n∑

j=1

Aj
i (x)ξ

2
j − aσi(x) with Aj

i (x) = gj(x)σj
i−1(x). (2.30)

In the case i = 1, we recover the Hamiltonian (2.25), i.e.,

H =
1

2
I1 +

a

2

n∑

α=0

aα.
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Proposition 2.4. The Jacobi system on T ⋆E defines a Stäckel system, with Stäckel

matrix

Bi
k(x

k) = (−1)i (xk)n+1−i

4V (xk)
(2.31)

and potential functions

fk(x
k) = a

(xk)n+1

4V (xk)
(2.32)

for i, k = 1, . . . , n.

Proof. It is obvious from its definition that B is a Stäckel matrix. We just need to

prove that A = B−1. To this aim we first prove a useful identity. Let us consider

the integral in the complex plane

1

2iπ

∫

|z|=R

zn−i

(z − λ)

Ux(λ)

Ux(z)
dz.

When R → ∞ the previous integral vanishes because the integrand vanishes as 1/R2

for large R. We then compute this integral using the theorem of residues and we get

the identity
n∑

k=1

(xk)n−i

U ′
x(x

k)

∏

j 6=k

(λ− xj) = λn−i. (2.33)

Equipped with this identity let us now prove that

n∑

k=1

Bi
k A

k
j = δi

j.

Multiplying this relation by (−1)j−1λn−j and summing over j from 1 to n, we get

the equivalent relation

n∑

k=1

Bi
k

n∑

j=1

(−1)j−1λn−jAk
j = (−1)i−1λn−i,

which becomes, using (2.30) and (2.27):

n∑

k=1

Bi
k g

k(x)
∏

j 6=k

(λ− xj) = (−1)i−1λn−i.

Using the explicit form of gk(x) given in (2.22) and of the matrix B, this relation

reduces to the identity (2.33) and this completes the derivation of (2.31).
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In order to get the functions fi(x
i) as in (2.10), let us resort to (2.30) and solve,

for the unknown fi, the following equation

−aσi(x) =
n∑

j=1

Aj
i (x)fj .

Multiplying both sides by Bi
k, summing over i from 1 to n, and using (2.31) we get

fk = −a
n∑

i=1

Bi
kσi(x) = −

a

4V (xk)

n∑

i=1

(−1)i(xk)n+1−iσi(x)

= −
a

4V (xk)

[
n∑

i=0

(−1)i(xk)n+1−iσi(x) − (xk)n+1

]
.

In view of (2.28), we have
∑n

i=0 (−1)i(xk)n−iσi(x) =
∏n

j=1(x
k − xj) = 0, which

completes the proof.

Remark 2.5. 1. The fact that the geodesic flow on T ⋆E is a Stäckel system

was first proved by Benenti in [3]. We have given here a new derivation,

which makes the link between Moser’s conserved quantities on T ∗Rn+1 and

the Stäckel conserved quantities on T ∗E . We have extended this link to the

case where Jacobi’s potential is admitted.

2. Checking that the unconstrained observables Ii are in involution is most conve-

niently done using their generating function (2.26). Indeed it is easy to verify

the relation

{Gλ(ξ, x), Gµ(ξ, x)} = 0, λ, µ ∈ R,

which implies, via (2.29), and upon expansion in powers of λ and µ, the rela-

tions {Ii, Ij} = 0 for any i, j = 1, . . . , n.

3. Some authors [2, 22] have quantized the full set of commuting observables for

the geodesic flow of the ellipsoid E ⊂ Rn+1 in its unconstrained form, namely

on T ∗Rn+1. Notice though that in the reduction process from T ∗Rn+1 to T ∗E

quantum corrections may prove necessary in order to insure self-adjointness of

the quantized observables. Our point of view will be to perform the classical

reduction in the first place and then to quantize the observables directly on

T ∗E via a specific procedure that will be described in Section 3.
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2.6 The Neumann system

The Neumann Hamiltonian on (T ∗Rn+1,
∑n

α=0 dpα ∧ dyα) is

H = 1

2

n∑

α=0

(
p2

α + aαy
2
α

)
(2.34)

with the real parameters 0 < a0 < a1 < . . . < an. Under the symplectic reduction,

with the second class constraints

Z1(p, y) =
n∑

α=0

y2
α − 1 = 0, Z2(p, y) =

n∑

α=0

pαy
α = 0, (2.35)

it becomes a dynamical system on (T ∗Sn, dξi ∧ dxi).

This system is classically integrable, with the following commuting first integrals

of the Hamiltonian flow in T ∗Rn+1:

Fα(p, y) = y2
α +

∑

β 6=α

(pαyβ − pβyα)2

aα − aβ
with α = 0, 1, . . . , n. (2.36)

The symplectic embedding

ι : T ∗Sn →֒ T ∗Rn+1

given by Z1(p, y) = 0 and Z2(p, y) = 0 preserves the previous conservation laws.

Indeed the Poisson brackets of the restrictions Fα|T ∗E = Fα ◦ ι of the functions Fα

are still given by the Dirac brackets (2.18) of the second class constraints (2.35).

This time we have

{Z1, Z2} = −2
n∑

α=0

y2
α 6= 0, {Z1, Fα} = 0,

which gives again

{Fα|T ∗E , Fβ|T ∗E} = 0.

Let us introduce an adapted coordinate system on (T ∗Sn, dξi∧dxi) much in the

same manner as for the ellipsoid.

We start with the following definition [26] of a coordinate system (x1, . . . , xn)

on Sn:

Qλ(y, y) =

n∑

α=0

y2
α

aα − λ
= −

∏n
i=1(λ− xi)∏n
α=0(λ− aα)

.

14



The following inequalities hold: 0 < a0 < x1 < a1 < . . . < xn < an. We get, in the

same way as before,

y2
α =

∏n
i=1(aα − xi)∏
β 6=α(aα − aβ)

(2.37)

together with the following expression of the round metric g =
∑n

α=0 dy
2
α|Sn in terms

of the newly introduced coordinates, namely

g =

n∑

i=1

gi(x)(dx
i)2 with gi(x) = −

U ′
x(x

i)

4V (xi)
(2.38)

with the notation (2.21). Again, we put for convenience gi(x) = 1/gi(x).

Our goal is to deduce from the knowledge of (2.36) the independent quantities in

involution I1, . . . , In on (T ∗Sn, dξi∧dxi). The formula (2.24) relating unconstrained

and constrained momenta still holds and yields the

Proposition 2.6. The Neumann system (Fα|T ∗Sn)α=0,...,n retains the following form

Fα|T ∗Sn = −
Gaα

(ξ, x)∏

β 6=α

(aα − aβ)

where

Gλ(ξ, x) =
n∑

i=1

gi(x)
∏

j 6=i

(λ− xj)ξ2
i +

n∏

j=1

(λ− xj).

Let us, again, posit

Gλ(ξ, x) =
n∑

i=1

(−1)i−1λn−iIi(ξ, x) + λn

where the independent functions Ii (i = 1, . . . , n) are in involution and can be

written as

Ii(ξ, x) =

n∑

j=1

Aj
i (x)ξ

2
j − σi(x) with Aj

i (x) = gj(x)σj
i−1(x), (2.39)

where the symmetric functions σi(x) are as in (2.28).

Using the relations

σ1(x) =

n∑

i=1

xi, and

n∑

α=0

aαy
2
α =

n∑

α=0

aα −
n∑

i=1

xi,

one can check that the Hamiltonian (2.34) is H = 1

2
I1.
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Proposition 2.7. The Neumann flow on (T ∗Sn, H) defines a Stäckel system, with

Stäckel matrix

Bi
k(x

k) = (−1)i (xk)n−i

4V (xk)

and potential functions

fk(x
k) =

(xk)n

4V (xk)
(2.40)

for i, k = 1, . . . , n.

Proof. To check that A = B−1, it is enough to use the identity (2.33). The compu-

tation of the potential functions fk proceeds along the same lines as in the proof of

Proposition 2.4.

Remark 2.8. The involution property {Ii, Ij} = 0 for i, j = 1, . . . , n, similarly to

the case of the ellipsoid, is seen to follow from the relation {Gλ(ξ, x), Gµ(ξ, x)} = 0.

2.7 Test particles in generalized Kerr-Newman background

Plebanski and Demianski have constructed in [29, 30] a class of metrics generalizing

the Kerr-Newman solution in 4-dimensional spacetime. The former are also known

as the Kerr-Newman-Taub-NUT-de Sitter solutions of the Einstein-Maxwell equa-

tions. The metric, in the coordinate system (x1, x2, x3, x4) = (p, q, σ, τ), retains the

form

g =
X

p2 + q2
(dτ + q2dσ)2 −

Y

p2 + q2
(dτ − p2dσ)2 +

p2 + q2

X
dp2 +

p2 + q2

Y
dq2 (2.41)

with

X = γ − g2 + 2np− ǫp2 −
Λ

3
p4, & Y = γ + e2 − 2mq + ǫq2 −

Λ

3
q4, (2.42)

where (m, γ) are related to the mass and angular momentum of the Kerr black

hole, (e, g) to the electric and magnetic charge; n is the NUT charge, and Λ the

cosmological constant. The remaining parameter ǫ can be scaled out to ±1 or 0.

This metric, g, together with the electromagnetic field, locally given by F = dA

where

A =
1

p2 + q2

[
(eq + gp)dτ + pq(gq − ep)dσ

]
, (2.43)
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provide an exact solution of the Einstein-Maxwell equations with cosmological con-

stant Λ. Let us notice for further use that

∇iA
i = 0. (2.44)

Upon defining the 1-forms

K =

√
Y

2(p2 + q2)
(dτ − p2 dσ) +

√
p2 + q2

2Y
dq,

L =

√
Y

2(p2 + q2)
(dτ − p2 dσ) −

√
p2 + q2

2Y
dq,

M1 =

√
p2 + q2

X
dp,

M2 =

√
X

p2 + q2
(dτ + q2dσ),

one constructs the 2-form

Y = pK ∧ L− qM1 ∧M2. (2.45)

One can check that the twice-symmetric tensor P = −Y2, namely Pij = −YikYℓjg
kℓ,

is a Killing-Maxwell tensor (see (2.7)), given by

P = p2(K ⊗ L+ L⊗K) + q2(M1 ⊗M1 +M2 ⊗M2). (2.46)

We thus recover Carter’s result [11] about the integrability of the Hamiltonian flow

for a charged test particle in the generalized Kerr-Newman background in a different

manner.

Remark 2.9. The 2-form Y in (2.45) defines what is usually called a Killing-Yano

tensor [21, 8].

The four conserved quantities in involution for the generalized Kerr-Newman

system are, respectively,

H̃ = 1

2
gij(ξi − Ai)(ξj − Aj), P̃ = P ij(ξi − Ai)(ξj − Aj) (2.47)

where P is as in (2.46), and

S̃ = ξ3 − A3, T̃ = ξ4 − A4. (2.48)
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2.8 The Multi-Centre geodesic flow

The class of Multi-Centre Euclidean metrics in 4 dimensions retain, in a local coor-

dinate system (xi) = (t, (ya)) ∈ R× R3, the form

g =
1

V (y)
(dt+ Aa(y)dy

a)2 + V (y)γ (2.49)

with γ = δab dy
adyb the flat Euclidean metric in 3-space, and dV = ±⋆ (dA) where ⋆

is the Hodge star for γ. These conditions insure that the metric (2.49) is Ricci-flat.

For some special potentials V (y), the geodesic flow is integrable as shown in

[20, 13, 35]. The four conserved quantities in involution are given by

H = 1

2
gijξiξj, K = Kiξi, L = Liξi, P = P ijξiξj, (2.50)

where K and L are two commuting Killing vectors and P a Killing 2-tensor whose

expressions can be found in the previous References.

2.9 The Di Pirro system

Di Pirro has proved (see, e.g., [28], p. 113) that the Hamiltonian on T ∗R3

H =
1

2(γ(x1, x2) + c(x3))

[
a(x1, x2)ξ2

1 + b(x1, x2)ξ2
2 + ξ2

3

]
(2.51)

admits one and only one additional first integral given by

P =
1

(γ(x1, x2) + c(x3))

[
c(x3)

(
a(x1, x2)ξ2

1 + b(x1, x2)ξ2
2

)
− γ(x1, x2)ξ2

3

]
. (2.52)

In the case where the metric defined by H in (2.51) possesses a Killing vector,

the system becomes integrable though not of Stäckel type. This happens, e.g., if (i)

c(x3) = const., or (ii) a = b and γ depend on r =
√

(x1)2 + (x2)2 only.

3 A quantization scheme for integrable systems

We wish to deal now with the quantum version of the preceding examples. Let us

start with some preliminary considerations:
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1. There is no universally accepted procedure of quantization, i.e., of a linear

identification, Q, of a space of classical observables with some space of lin-

ear symmetric operators on a Hilbert space. One — among many — of the

pathways to construct such a quantization mapping has been to demand that

the mapping Q be equivariant with respect to some Lie group of symplecto-

morphisms of classical phase space.

2. Similarly, there is no universally accepted notion of quantum integrability.

However, given a classical integrable system P1, . . . , Pn on a symplectic mani-

fold (M, ω), and a quantization mapping Q : Pi 7→ P̂i, we will say that such a

system is integrable in the quantum sense if [P̂i, P̂j ] = 0 for all i, j = 1, . . . , n.

3. A large number of integrable systems involve quadratic observables. We will

thus choose to concentrate on this important — yet very special — case, both

from the classical and quantum viewpoint.

4. Among all possible quantization procedures, the search for integrability-pre-

serving ones (if any) should be of fundamental importance. The quantization

of quadratic observables we will present below might serve as a starting point

for such a programme.

3.1 Quantizing quadratic and cubic observables

Let us recall that the space Fλ(M) of λ-densities on M is defined as the space of

sections of the complex line bundle |ΛnT ∗M |λ ⊗C. In the case where the configura-

tion manifold is orientable, (M, vol), such a λ-density can be, locally, cast into the

form φ = f |vol|λ with f ∈ C∞(M) which means that φ transforms under the action

of a ∈ Diff(M) according to f 7→ a∗f |(a∗vol)/vol|λ.

The completion H(M) of the space of compactly supported half-densities, λ = 1

2
,

is a Hilbert space canonically attached toM that will be used throughout this article.

The scalar product of two half-densities reads

〈φ, ψ〉 =

∫

M

φψ

where the bar stands for complex conjugation.

We will assume that configuration space is endowed with a (pseudo-)Riemannian

structure, (M, g); and denote by |volg| the corresponding density and by Γk
ij the

associated Christoffel symbols.
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The quantization now introduced is a linear invertible mapping from the space

of quadratic observables P = P jk
2 (x)ξjξk + P j

1 (x)ξj + P0(x) to the space of second-

order differential operators on H(M), viz A = P̂ = Ajk
2 (x)∇j∇k +Aj

1(x)∇j +A0(x)1

where the covariant derivative of half-densities ∇jφ = ∂jφ − 1

2
Γk

jkφ (or, locally,

∇jφ = (∂jf)|volg|
1

2 ) has been used. We furthermore require that the principal

symbol be preserved (see below (3.1), (3.2) and (3.3)), and that P̂ be formally

self-adjoint, i.e., 〈φ, P̂ψ〉 = 〈P̂φ, ψ〉 for all compactly supported φ, ψ ∈ F 1

2

(M).

The quantization reads

Ajk
2 = −P jk

2 (3.1)

Aj
1 = iP j

1 −∇kP
jk
2 (3.2)

A0 = P0 +
i

2
∇jP

j
1 (3.3)

and admits the alternative form

P̂ = −∇j◦P
jk
2 ◦∇k +

i

2

(
P j

1 ◦∇j + ∇j◦P
j
1

)
+ P01 (3.4)

which makes clear the symmetry of the quantum operators.

Remark 3.1. The formula (3.4) was originally used by Carter [11] for proving the

quantum integrability of the equations of motion of charged test particles in the

Kerr-Newman solution.

Remark 3.2. It is worth mentioning that formula (3.4) actually corresponds at the

same time to the projectively equivariant quantization [24, 16] and to the conformally

equivariant quantization [17, 15] Q0,1(P ) : F0(M) → F1(M) restricted to quadratic

polynomials.

One can check the relations:

[P̂0, Q̂1] = i[P0, Q1]S = i ̂{P0, Q1}, (3.5)

[P̂0, Q̂2] = − 1

2

(
∇j◦[P0, Q2]

j
S + [P0, Q2]

j
S◦∇j

)
= i ̂{P0, Q2}, (3.6)

[P̂1, Q̂1] = − 1

2

(
∇j◦[P1, Q1]

j
S + [P1, Q1]

j
S◦∇j

)
= i ̂{P1, Q1}. (3.7)
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Quantum corrections appear explicitly whenever k+ ℓ > 2, as can be seen from

the next commutators:

[P̂1, Q̂2] = i ̂{P1, Q2} + iÂP1,Q2
(3.8)

where

AP1,Q2
=

1

2
∇j◦Q

jk
2 ◦∇k(∇ℓP

ℓ
1 ) (3.9)

is a scalar quantum correction that may vanish in some special instances, e.g., if the

vector-field P1 is divergence-free (in particular if it is a Killing vector-field).

The previous formulæ can be found, in a different guise, in[11]. Here, we will go

one step further and compute the commutators [P̂2, Q̂2] which involve third-order

differential operators. To that end, we propose to quantize homogeneous cubic

polynomials according to

P̂3 = −
i

2

(
∇j◦P

jkℓ
3 ◦∇k◦∇ℓ + ∇j◦∇k◦P

jkℓ
3 ◦∇ℓ

)
(3.10)

as a “minimal” choice to insure the symmetry of the resulting operator.

Remark 3.3. The formula (3.10) precisely coincides with the projectively equi-

variant quantization [7] Q0,1(P ) : F0(M) → F1(M) restricted to cubic polynomials.

The previously mentioned commutator is actually given by

[P̂2, Q̂2] = [P2, Q2]
jkℓ
S ∇j◦∇k◦∇ℓ

+
3

2

(
∇j[P2, Q2]

jkℓ
S

)
∇k◦∇ℓ (3.11)

+

[
1

2

(
∇j∇k[P2, Q2]

jkℓ
S

)
+

2

3

(
∇kB

kℓ
P2,Q2

)]
∇ℓ

where the skew-symmetric tensor

Bjk
P,Q = P ℓ[j∇ℓ∇mQ

k]m + P ℓ[jR
k]
m,nℓQ

mn − (P ↔ Q)

−∇ℓP
m[j∇mQ

k]ℓ − P ℓ[jRℓmQ
k]m (3.12)

satisfies, in addition, BP,Q = −BQ,P . We have used the following convention for the

Riemann and Ricci tensors, viz Rℓ
i,jk = ∂jΓ

ℓ
ik − (j ↔ k) + . . ., and Rij = Rk

i,kj.

We can rewrite the commutator (3.11) with the help of the quantization pre-

scription (3.4) and (3.10) as

[P̂2, Q̂2] = i ̂{P2, Q2} + iÂP2,Q2
(3.13)
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where

AP2,Q2
= −

2

3

(
∇kB

kℓ
P2,Q2

)
ξℓ (3.14)

is a divergence-free vector-field associated with the tensor (3.12) and providing

the potential quantum correction for quadratic polynomials; recall that, according

to (3.4), one has ÂP2,Q2
= (i/2)(Aℓ

P2,Q2
◦∇ℓ + ∇ℓ◦A

ℓ
P2,Q2

).

We thus have the

Proposition 3.4. The commutator of the quantum operators P̂ and Q̂ associated

with two general quadratic polynomials P = P2 + P1 + P0 and Q = Q2 + Q1 + Q0

reads
1

i
[P̂ , Q̂] = {̂P,Q} + ÂP2,Q2

+ ÂP1,Q2
− ÂQ1,P2

(3.15)

where the third-order differential operator {̂P,Q} is given by (3.10).

Proof. The formula (3.15) results trivially from the previously computed commuta-

tors and from collecting the anomalous terms appearing in (3.8) and (3.13) only.

Remark 3.5. In the special case where Q2 = H as given by (2.3), the anomalous

tensor (3.12) takes the form

Bjk
P,H = − 1

2
∇[j∇ℓP

k]ℓ − P ℓ[jR
k]
ℓ

and reduces to

Bjk
P,H = −P ℓ[jR

k]
ℓ (3.16)

if P is a Killing tensor [11].

Remark 3.6. In the particular case where H = 1

2
gjk(ξj − eAj)(ξk − eAk) is the

Hamiltonian of the electromagnetic coupling, our quantum commutator (3.15) re-

duces to Carter’s formula (6.16) in [11].

The purpose of our article is, indeed, to study, using explicit examples, how clas-

sical integrability behaves under the “minimal” quantization rules proposed in [11]

and somewhat extended here. The next section will be devoted to the computation

of the quantum corrections in (3.8) and (3.13) for all the examples that have been

previously introduced.
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3.2 The equivariance Lie algebra

So far, the transformation property of the quantization rules (3.4) and (3.10) under

a change of coordinates has been put aside. It is mandatory to investigate if these

rules are consistent with the map Q : P 7→ P̂ (which has been defined for cubic

polynomials, P =
∑3

k=0 P
i1···ıkξi1 . . . ξik , only) being equivariant with respect to

some Lie subgroup of the group of diffeomorphisms of configuration space, M .

Restricting considerations to the infinitesimal version of the sought equivariance,

we will therefore look for the set g of all vector fields X with respect to which our

quantization is equivariant, namely LXQ = 0. From its very definition, g is a Lie

subalgebra of the Lie algebra, Vect(M), of vector fields ofM . The previous condition

means that, for each polynomial P , the following holds:

LX(Q(P )φ) −Q(LXP )φ−Q(P )LXφ = 0 (3.17)

where LXφ denotes the Lie derivative of the half-density φ of M with respect to the

vector field X ∈ g and LXP = {X,P} is the Poisson bracket of X = X iξi and P .

Let us recall that, putting locally φ = f |vol|
1

2 ∈ F 1

2

with f ∈ C∞(M), we get

the following expression for the Lie derivative: LXφ = (Xf + 1

2
div(X)f)|vol|

1

2 , or

with a slight abuse of notation, LXφ = Xj∇jφ+ 1

2
(∇jX

j)φ = 1

2
(Xj

◦∇j +∇j◦X
j)φ,

that is

LXφ =
1

i
X̂φ (3.18)

for any X ∈ Vect(M).

The equivariance condition (3.17) must hold for any φ ∈ F 1

2

and thus translates

into

[X̂, P̂ ] = i{̂X,P} (3.19)

for any X ∈ g and any cubic polynomial P . The Condition (3.19) characterizes

the Lie algebra g we are looking for. We will consider successively the case of

polynomials of increasing degree:

(i) Returning to the previous relations (3.5), (3.7) together with X = P1 and

P = Q0 + Q1, we readily find that the Lie algebra g1 spanned by the solutions

of (3.19) restricted to polynomials P of degree one is g1 = Vect(M).

(ii) Let us now proceed to the case of quadratic polynomials P = P jkξjξk. The

relations (3.7) and (3.9) give, in that case, the following equivariance defect

[X̂, P̂ ] − i{̂X,P} =
i

2
∇j◦P

jk
◦∇k(∇ℓX

ℓ)1. (3.20)
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This defect vanishes for any such P iff ∇k(∇ℓX
ℓ) = 0, i.e.,

d(div(X)) = 0. (3.21)

The vector fields X with constant divergence span now a subspace g2 ⊂ g1 which is,

indeed, an infinite dimensional Lie subalgebra of Vect(M). The “minimal” quanti-

zation restricted to quadratic polynomials is therefore equivariant with respect to

the group of all diffeomorphisms which preserve the volume up to a multiplicative

nonzero constant.

(iii) Let us finally consider homogeneous cubic polynomials P = P jkℓξjξkξℓ and

compute the equivariance defect in this case. A tedious calculation leads to

[X̂, P̂ ] − i{̂X,P} = iẐ, Z = Zjξj, (3.22)

with

Zj = ∇k

[
P jkℓ∇ℓdiv(X) − P ℓm[jLXΓ

k]
ℓm

]
(3.23)

where

LXΓk
ℓm = ∇ℓ∇mX

k − Rk
m,nℓX

n (3.24)

is the Lie derivative of the symmetric linear connection ∇ with respect to the vector

field X.

Proposition 3.7. The Lie algebra g ⊂ Vect(M) with respect to which the “minimal”

quantization (3.4) and (3.10) is equivariant is aff(M,∇), the Lie algebra of affine

vector fields of (M,∇).

Proof. The equivariance condition (3.19), defining the Lie algebra g3 we are looking

for, is equivalent to Z = 0 in (3.22) for all symmetric tensor fields P jkℓ, i.e., thanks

to (3.23) to

T jkℓ
k ∇ℓdiv(X) − T

ℓm[j
k LXΓ

k]
ℓm = 0

for all tensor fields T ℓmj
k = T

(ℓmj)
k . This readily implies that

2δj
(iδ

k
ℓ∇m)div(X) + δj

(iLXΓk
ℓm) − δk

(iLXΓj
ℓm) = 0.

Summing over i = j, one gets

2nδk
m∇ℓdiv(X) + 4δk

ℓ∇mdiv(X) + (n+ 1)LXΓk
ℓm − δk

mLXΓi
ℓi − δk

ℓLXΓi
mi = 0,

where n = dim(M), hence ∇idiv(X) = 0 and LXΓk
ij = δk

i ϕj +δ
k
jϕi for some 1-form ϕ

depending upon the (projective) vector field X. The expression (3.24) of the Lie
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derivative of the symmetric connection ∇ then yields LXΓj
ij = (n + 1)ϕi = 0 since

we have found that ∇i∇jX
j = 0. This entails LXΓk

ij = 0, proving that g = g3 is

nothing but the Lie algebra aff(M,∇) of affine vector fields.

We thus obtain the nested equivariance Lie algebras

g = aff(M,∇) ⊂ g2 ⊂ g1 = Vect(M)

where g2 is the Lie algebra of vector fields with constant divergence. (Note that

if M is compact without boundary, g2 reduces to the Lie algebra of divergence-free

vector fields.)

Conspicuously, our quantization scheme turns out to be equivariant with respect

to a rather small Lie subgroup of Diff(M), namely of the affine group of (M,∇). It

would be interesting to investigate to what extent the equivariance under the sole

affine group, GL(n,R)⋉Rn, of a flat affine structure (M,∇) allows one to uniquely

extend to the whole algebra of polynomials the quantization scheme we have devised

for cubic polynomials.

3.3 The quantum Stäckel system

The quantization of the general Stäckel system (see Section 2.4) has first been under-

taken by Benenti, Chanu and Rastelli in [4, 5]. We will derive, here, the covariant

expression of the quantum correction associated to the “minimal” quantization, with

the help of the results obtained in Section 3.1.

Denote by Ii = I2,i + I0,i the i-th Stäckel conserved quantity, i = 1, . . . , n,

in (2.11) where the indices 0 and 2 refer to the degree of homogeneity with respect

to the coordinates ξ. Applying (3.15) with P1 = Q1 = 0, P2 = I2,i and Q2 = I2,j

one gets

[Îi, Îj] = [Î2,i, Î2,j] = iÂI2,i,I2,j
=

2

3

(
∇kB

kℓ
I2,i,I2,j

)
∇ℓ.

Remark 3.8. This result shows that there are no quantum corrections produced

by the potential term. More generally, start with a system defined by independent,

homogeneous, quadratic observables H1, . . . , Hn which is integrable at the classical

and quantum levels. Consider a new set of observables H1+U1, . . . , Hn+Un obtained

by adding potential terms U1, . . . , Un; if the new system is classically integrable, it

will remain integrable at the quantum level.

We are now in position to prove the following
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Proposition 3.9. The quantum correction (3.12) of a general Stäckel system, with

commuting conserved quantities I1, . . . , In defined by (2.11), retains the form

Bkℓ
I2,i,I2,j

= −2I
s[k
2,i RstI

ℓ]t
2,j (3.25)

for i, j = 1, . . . , n, where Rst denotes the components of the Ricci tensor of the

metric associated with the Hamiltonian I1.

Proof. As a preliminary remark, let us observe that the Stäckel metric, given by

(2.10), needs not be Riemannian. So we will write it

g =

n∑

i=1

(dxi)2

Ai
1(x)

=

n∑

a=1

ηa(θ
a)2 (3.26)

where (θa = dxa/
√
|Aa

1|)a=1,...,n is the orthonormal moving coframe and the signature

of g is given by ηa = sign(Aa
1). We will denote by (ea =

√
|Aa

1|∂a)a=1,...,n the

associated orthonormal frame with respect to the metric ηab = ηaδab used to raise

and lower frame indices.

Let us recall, in order to fix the notation, that the connection form ω satisfies

the structure equation dθa + ωa
b ∧ θb = 0 and the associated curvature form, Ω,

given by Ωa
b = dωa

b + ωa
c ∧ ωc

b, is expressed in terms of the Riemann tensor by

Ωa
b = 1

2
Ra

b,cd θ
c ∧ θd. The indices a, . . . , d run from 1 to n and the Einstein sum-

mation convention is used when no ambiguity arises. Denoting by Rℓ
i,jk the local

components of the Riemann tensor, we have Ra
b,cd = θa

ℓ R
ℓ
i,jk e

i
be

j
ce

k
d.

We start off with the calculation of the connection form, ω, and of some compo-

nents of the curvature form, Ω. Straightforward computation, using relation (2.13),

then yields for the non-vanishing components of the connection

ωab,a = 1

2
ηbC

a
b

∣∣Ab
1

∣∣3/2

|Aa
1|

, a 6= b, ωab,c = ωab(ec),

the other nontrivial components ωab,b are obtained accordingly. For the curvature,

a lengthy computation gives the special components

Rac,cb = 3 (−ηaωca,c ωab,a − ηbωcb,c ωba,b + ηcωca,c ωcb,c) , a 6= b, (3.27)

which will be needed in the sequel.

Two last ingredients are the introduction of the frame components of various

objects. We will denote the Killing tensor I2,i (resp. I2,j) as P (resp. Q). Their
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frame components P = P bc eb ⊗ ec, and similarly for Q, will be

P bc = pbδbc, pb =
Ab

i

2|Ab
1|
, Qbc = qbδbc, qb =

Ab
j

2|Ab
1|
. (3.28)

The covariant derivative will have the frame components

DcPab = ec(Pab) − ωs
a,cPsb − ωs

b,cPas.

The equations which express that P ab is a Killing tensor are now

eb(pa) = 2ωab,a(ηapa − ηbpb), a 6= b,

ea(pa) = 0,
(3.29)

where the repeated indices are not summed over. One can check that they hold true

using the explicit form of pa given in (3.28) and the identity (2.13).

Using all of the previous information one can compute the frame components

of the various pieces appearing in the tensor Bij
P,Q. We have successively

P s[i∇s∇tQ
j]t − (P ↔ Q) =

∑

l 6=i,j

(4ωli,lωlj,l − 3ηlηiωli,lωij,i − 3ηlηjωlj,lωji,j)
[
piqj − ηlplηiqj + ηlqlηipj − (i↔ j)

]

and

∇sP
t[i∇tQ

j]s = 1

2

∑

l

ωli,lωlj,l

[
piqj − ηlplηiqj + ηlqlηipj − (i ↔ j)

]
.

Combining these relations, and using (3.27), we get

P s[i∇s∇tQ
j]t − (P ↔ Q) −∇sP

t[i∇tQ
j]s =

1

2

∑

l

ηlRil,lj

[
piqj − ηlplηiqj + ηlqlηipj − (i ↔ j)

]
.

Let us then compute

P s[iRj]
u,vsQ

uv − (P ↔ Q) = 1

2

∑

l

ηlRil,lj

[
ηlplηiqj − ηlqlηipj − (i ↔ j)

]
.

Collecting all the pieces leaves us with

P s[i∇s∇tQ
j]t + P s[iR

j]
u,vsQuv − (P ↔ Q) −∇sP

t[i∇tQ
j]s =

1

2

∑
l ηlRil,lj(piqj − pjqi).

(3.30)
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The last sum is nothing but the frame components of the tensor −P s[iRstQ
j]t, so

that we have obtained the tensorial relation

P s[i∇s∇tQ
j]t + P s[iRj]

u,vsQ
uv − (P ↔ Q) −∇sP

t[i∇tQ
j]s = −P s[iRstQ

j]t, (3.31)

which implies

Bij
P,Q = −2P s[iRstQ

j]t, (3.32)

in agreement with [5]. This ends the proof of Proposition 3.9.

Now we can come to the central point of our analysis: is a Stäckel system

integrable at the quantum level? The answer is given by the following

Corollary 3.10. ([4, 5]) A Stäckel system is integrable at the quantum level iff

Rij = 0 for i 6= j, where i, j = 1, . . . , n, (3.33)

in the special coordinates which are constituent to this system.

Proof. The Killing tensors I2,i are diagonal, for i = 1, . . . , n, in the Stäckel coordinate

system, and the proof follows from (3.25).

The conditions (3.33) are known as the Robertson conditions [31], as interpreted

by Eisenhart [18]. Quite recently, Benenti et al [4] have refined the definition of

the separability of the Schrödinger equation and shown that, for Stäckel systems,

the Robertson conditions are necessary and sufficient for the separability of the

Schrödinger equation. As mentioned in Remark 2.1, the classical integrability is

equivalent to the separability of the Hamilton-Jacobi equation; the situation for

these systems can be therefore summarized by the following diagram:

Classical integrability ⇐⇒ separable Hamilton-Jacobi

⇓ provided Rij = 0 (i 6= j)

Quantum integrability ⇐⇒ separable Schrödinger
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3.4 The quantum ellipsoid and Neumann systems

It is now easy to prove that the ellipsoid geodesic flow (see section 2.5), including

the potential given in (2.16), is integrable at the quantum level. Using the coor-

dinates (xi) and the (Riemannian) metric given by (2.22), one can check that the

Ricci tensor has components

Rij =
N

xi

∑

s 6=i

1

xs
gij, N =

a0a1 · · ·an

x1 · · ·xn
,

and therefore satisfies the Robertson conditions. As already emphasized, the oc-

currence of an additional potential is irrelevant for the quantum analysis since the

potential terms do not generate quantum corrections (see Remark 3.8).

Similarly we get the quantum integrability for the Neumann system (see Sec-

tion 2.6) using the metric on Sn given by (2.38). The Ricci tensor being given

by

Rij = (n− 1)gij,

the Robertson conditions are again satisfied.

3.5 The quantum generalized Kerr-Newman system

The quantization of the four commuting observables (2.47) and (2.48) is straight-

forward.

In view of the relations given in Section 3 all quantum commutators vanish

except for [
̂̃
H,

̂̃
P ]; this is due to the fact that the conserved quantities S̃ and T̃

(see (2.48)) are Killing-Maxwell vector fields.

The anomalous terms in the previous commutator are AP2,H2
, AP1,H2

and AP2,H1

where P2 = P ijξiξj, H2 = 1

2
gijξiξj, P1 = −2P ijξiAj and H1 = −gijξiAj.

The vector field AP2,H2
given by (3.14) actually vanishes because, cf. (3.16),

Bjk
P2,H2

= −P ℓ[jR
k]
ℓ = 0 as a consequence of (2.7); indeed the tensor P anti-commutes

with the electromagnetic field strength F , implying that it commutes with the stress-

energy electromagnetic tensor, hence with the Ricci tensor in view of the Einstein-

Maxwell equations [11].

The two other anomalous terms (3.9) also vanish as it turns out that ∇jA
j = 0

(see (2.44)) and ∇j(P
jkAk) = 0.

This derivation reproduces and extends Carter’s results to the generalized Kerr-

Newman solution, in a somewhat shorter manner.
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Remark 3.11. Our analysis of quantum integrability for the generalized Kerr-

Newman solution in 4 dimensions can be carried over into recent work [19, 23, 32]

dealing with 5-dimensional black holes. In these cases, classical integrability follows

from the existence of 3 Killing vectors and 1 quadratic Killing tensor, besides the

Hamiltonian. These metrics being Einstein, the above arguments given for the

generalized Kerr-Newman case apply just as well, insuring quantum integrability.

This fact is in agreement with the separability of the Laplace operator.

3.6 The quantum Multi-Centre system

For this example too, the quantization is straightforward. The single point to be

checked for quantum integrability is just the commutator [Ĥ, P̂ ], with the possible

quantum correction (3.16) given by −P ℓ[jR
k]
ℓ . Here it vanishes trivially since these

metrics are Ricci-flat.

3.7 The quantum Di Pirro system

As seen in Section 2.9, the classical integrability of this system is provided by three

commuting observables: on the one hand H , P respectively given by (2.51) and

(2.52), and T = ξ3 if c(x3) = const., and on the other hand H , P and J = ξ1x
2−ξ2x1

if a = b, γ depend on r only.

At the quantum level, the Killing vectors T̂ and Ĵ do commute with Ĥ according

to (3.8) and (3.9). As for the commutator [P̂ , Ĥ] of the quantized Killing tensors,

it is given by (3.16), namely BP,H = −1
2
P ℓ[jR

k]
ℓ ∂j ∧ ∂k, and one finds

BP,H = −
3

16

c′(x3)

(γ(x1, x2) + c(x3))3
(a(x1, x2)∂1γ(x

1, x2) ∂1 ∧ ∂3

+ b(x1, x2)∂2γ(x
1, x2) ∂2 ∧ ∂3).

For the system (H,P, T ), this quantum correction vanishes since c′(x3) = 0,

implying quantum integrability. However, for the system (H,P, J), in the generic

case γ 6= const., we get BP,H 6= 0, showing that the minimal quantization rules may

produce quantum corrections.
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4 Discussion and outlook

It would be worthwhile to get insight into the status of our “minimal” quantization

rules and to their relationship with other bona fide quantization procedures. Among

the latter, let us mention those obtained by geometric means, and more specifically

by imposing equivariance of the quantization mapping, Q, with respect to some

symmetry group, G, e.g., a group of automorphisms of a certain geometric structure

on configuration space, M . We refer to the articles [24, 15, 16, 17, 6] for a detailed

account on equivariant quantization. The two main examples are respectively the

projectively, G = SL(n + 1,R), and conformally, G = O(p + 1, q + 1), equivariant

quantizations which have been shown to be uniquely determined [24, 17, 15, 16].

For instance, the conformally equivariant quantization Q 1

2

: F 1

2

(M) → F 1

2

(M) has

been explicitly computed for quadratic [15] and cubic [25] observables; for example,

if P = P ijξiξj we then have

Q 1

2

(P ) = P̂ + β3 ∇i∇j(P
ij) + β4 gijgkℓ∇i∇j(P

kℓ) + β5 RijP
ij + β6 RgijP

ij (4.1)

where the “minimal” quantum operator

P̂ = −∇i◦P
ij
◦∇j (4.2)

is given by (3.4), together with β3 = −n/(4(n + 1)), β4 = −n/(4(n + 1)(n + 2)),

β5 = n2/(4(n−2)(n+1)), β6 = −n2/(2(n2−4)(n2−1)), assuming n = dim(M) > 2.

In (4.1) we denote by Rij the components of the Ricci tensor and by R the scalar

curvature. The formula (4.1) provides a justification of the term “minimal” for the

mapping P 7→ P̂ given by (3.4) and (3.10).

We have checked that, in the special instance of the geodesic flow of the ellipsoid

discussed in Section 2.5, the quantum commutators of the observables Ii defined

in (2.30), namely [Q 1

2

(Ii),Q 1

2

(Ij)], fail to vanish for i 6= j = 1, . . . , n. Had we started

from the expression (4.1) with adjustable coefficients β3, . . . , β6, the requirement that

the latter commutator be vanishing imposes β3 = . . . = β6 = 0, leading us back to

the minimal quantization rule (4.2).

Despite their nice property of preserving, to a large extent, integrability (from

classical to quantum), the “minimal” quantization rules still remain an ad hoc pro-

cedure, defined for observables at most cubic in momenta, and do not follow from

any sound constructive principle, be it of a geometric or an algebraic nature. The

quest for a construct leading unambiguously to a genuine “minimal” quantization
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procedure remains an interesting challenge. As discussed in Section 3.2, the equiv-

ariance assumption with respect to the affine group might be helpful for determining

the sought “minimal” quantization of polynomials of higher degree. This analysis is

required for the quantization of, e.g., the newly discovered integrable systems [14]

which involve cubic Killing tensors.

Another field of applications of the present work could be the search for quantum

integrability of the geodesic flow on the higher dimensional generalizations of the

Kerr metric which have been lately under intense study [19, 12, 36].

Still another perspective for future work would be to generalise the previous

computation of quantum corrections to the case of classical integrability in the

presence of an electromagnetic field in a purely gauge invariant manner. In particular

the approach presented in Section 2.2 should be further extended at the quantum

level via the quantization of the Schouten-Maxwell brackets.
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