155 research outputs found

    Optic Flow Stimuli in and Near the Visual Field Centre: A Group fMRI Study of Motion Sensitive Regions

    Get PDF
    Motion stimuli in one visual hemifield activate human primary visual areas of the contralateral side, but suppress activity of the corresponding ipsilateral regions. While hemifield motion is rare in everyday life, motion in both hemifields occurs regularly whenever we move. Consequently, during motion primary visual regions should simultaneously receive excitatory and inhibitory inputs. A comparison of primary and higher visual cortex activations induced by bilateral and unilateral motion stimuli is missing up to now. Many motion studies focused on the MT+ complex in the parieto-occipito-temporal cortex. In single human subjects MT+ has been subdivided in area MT, which was activated by motion stimuli in the contralateral visual field, and area MST, which responded to motion in both the contra- and ipsilateral field. In this study we investigated the cortical activation when excitatory and inhibitory inputs interfere with each other in primary visual regions and we present for the first time group results of the MT+ subregions, allowing for comparisons with the group results of other motion processing studies. Using functional magnetic resonance imaging (fMRI), we investigated whole brain activations in a large group of healthy humans by applying optic flow stimuli in and near the visual field centre and performed a second level analysis. Primary visual areas were activated exclusively by motion in the contralateral field but to our surprise not by central flow fields. Inhibitory inputs to primary visual regions appear to cancel simultaneously occurring excitatory inputs during central flow field stimulation. Within MT+ we identified two subregions. Putative area MST (pMST) was activated by ipsi- and contralateral stimulation and located in the anterior part of MT+. The second subregion was located in the more posterior part of MT+ (putative area MT, pMT)

    Discovering patterns in drug-protein interactions based on their fingerprints

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovering of interesting patterns in drug-protein interaction data at molecular level can reveal hidden relationship among drugs and proteins and can therefore be of paramount importance for such application as drug design. To discover such patterns, we propose here a computational approach to analyze the molecular data of drugs and proteins that are known to have interactions with each other. Specifically, we propose to use a data mining technique called <it>Drug-Protein Interaction Analysis </it>(<it>D-PIA</it>) to determine if there are any commonalities in the fingerprints of the substructures of interacting drug and protein molecules and if so, whether or not any patterns can be generalized from them.</p> <p>Method</p> <p>Given a database of drug-protein interactions, <it>D-PIA </it>performs its tasks in several steps. First, for each drug in the database, the fingerprints of its molecular substructures are first obtained. Second, for each protein in the database, the fingerprints of its protein domains are obtained. Third, based on known interactions between drugs and proteins, an interdependency measure between the fingerprint of each drug substructure and protein domain is then computed. Fourth, based on the interdependency measure, drug substructures and protein domains that are significantly interdependent are identified. Fifth, the existence of interaction relationship between a previously unknown drug-protein pairs is then predicted based on their constituent substructures that are significantly interdependent.</p> <p>Results</p> <p>To evaluate the effectiveness of <it>D-PIA</it>, we have tested it with real drug-protein interaction data. <it>D-PIA </it>has been tested with real drug-protein interaction data including enzymes, ion channels, and protein-coupled receptors. Experimental results show that there are indeed patterns that one can discover in the interdependency relationship between drug substructures and protein domains of interacting drugs and proteins. Based on these relationships, a testing set of drug-protein data are used to see if <it>D-PIA </it>can correctly predict the existence of interaction between drug-protein pairs. The results show that the prediction accuracy can be very high. An AUC score of a ROC plot could reach as high as 75% which shows the effectiveness of this classifier.</p> <p>Conclusions</p> <p><it>D-PIA </it>has the advantage that it is able to perform its tasks effectively based on the fingerprints of drug and protein molecules without requiring any 3D information about their structures and <it>D-PIA </it>is therefore very fast to compute. <it>D-PIA </it>has been tested with real drug-protein interaction data and experimental results show that it can be very useful for predicting previously unknown drug-protein as well as protein-ligand interactions. It can also be used to tackle problems such as ligand specificity which is related directly and indirectly to drug design and discovery.</p

    An EGF-like Protein Forms a Complex with PfRh5 and Is Required for Invasion of Human Erythrocytes by Plasmodium falciparum

    Get PDF
    Invasion of erythrocytes by Plasmodium falciparum involves a complex cascade of protein-protein interactions between parasite ligands and host receptors. The reticulocyte binding-like homologue (PfRh) protein family is involved in binding to and initiating entry of the invasive merozoite into erythrocytes. An important member of this family is PfRh5. Using ion-exchange chromatography, immunoprecipitation and mass spectroscopy, we have identified a novel cysteine-rich protein we have called P. falciparum Rh5 interacting protein (PfRipr) (PFC1045c), which forms a complex with PfRh5 in merozoites. Mature PfRipr has a molecular weight of 123 kDa with 10 epidermal growth factor-like domains and 87 cysteine residues distributed along the protein. In mature schizont stages this protein is processed into two polypeptides that associate and form a complex with PfRh5. The PfRipr protein localises to the apical end of the merozoites in micronemes whilst PfRh5 is contained within rhoptries and both are released during invasion when they form a complex that is shed into the culture supernatant. Antibodies to PfRipr1 potently inhibit merozoite attachment and invasion into human red blood cells consistent with this complex playing an essential role in this process

    Retinotopic Mapping of Categorical and Coordinate Spatial Relation Processing in Early Visual Cortex

    Get PDF
    Spatial relations are commonly divided in two global classes. Categorical relations concern abstract relations which define areas of spatial equivalence, whereas coordinate relations are metric and concern exact distances. Categorical and coordinate relation processing are thought to rely on at least partially separate neurocognitive mechanisms, as reflected by differential lateralization patterns, in particular in the parietal cortex. In this study we address this textbook principle from a new angle. We studied retinotopic activation in early visual cortex, as a reflection of attentional distribution, in a spatial working memory task with either a categorical or a coordinate instruction. Participants were asked to memorize a dot position, with regard to a central cross, and to indicate whether a subsequent dot position matched the first dot position, either categorically (opposite quadrant of the cross) or coordinately (same distance to the centre of the cross). BOLD responses across the retinotopic maps of V1, V2, and V3 indicate that the spatial distribution of cortical activity was different for categorical and coordinate instructions throughout the retention interval; a more local focus was found during categorical processing, whereas focus was more global for coordinate processing. This effect was strongest for V3, approached significance in V2 and was absent in V1. Furthermore, during stimulus presentation the two instructions led to different levels of activation in V3 during stimulus encoding; a stronger increase in activity was found for categorical processing. Together this is the first demonstration that instructions for specific types of spatial relations may yield distinct attentional patterns which are already reflected in activity early in the visual cortex

    Plasmodium falciparum Reticulocyte Binding-Like Homologue Protein 2 (PfRH2) Is a Key Adhesive Molecule Involved in Erythrocyte Invasion

    Get PDF
    Erythrocyte invasion by Plasmodium merozoites is a complex, multistep process that is mediated by a number of parasite ligand-erythrocyte receptor interactions. One such family of parasite ligands includes the P. falciparum reticulocyte binding homologue (PfRH) proteins that are homologous with the P. vivax reticulocyte binding proteins and have been shown to play a role in erythrocyte invasion. There are five functional PfRH proteins of which only PfRH2a/2b have not yet been demonstrated to bind erythrocytes. In this study, we demonstrated that native PfRH2a/2b is processed near the N-terminus yielding fragments of 220 kDa and 80 kDa that exhibit differential erythrocyte binding specificities. The erythrocyte binding specificity of the 220 kDa processed fragment of native PfRH2a/2b was sialic acid-independent, trypsin resistant and chymotrypsin sensitive. This specific binding phenotype is consistent with previous studies that disrupted the PfRH2a/2b genes and demonstrated that PfRH2b is involved in a sialic acid independent, trypsin resistant, chymotrypsin sensitive invasion pathway. Interestingly, we found that the smaller 80 kDa PfRH2a/2b fragment is processed from the larger 220 kDa fragment and binds erythrocytes in a sialic acid dependent, trypsin resistant and chymotrypsin sensitive manner. Thus, the two processed fragments of PfRH2a/2b differed with respect to their dependence on sialic acids for erythrocyte binding. Further, we mapped the erythrocyte binding domain of PfRH2a/2b to a conserved 40 kDa N-terminal region (rPfRH240) in the ectodomain that is common to both PfRH2a and PfRH2b. We demonstrated that recombinant rPfRH240 bound human erythrocytes with the same specificity as the native 220 kDa processed protein. Moreover, antibodies generated against rPfRH240 blocked erythrocyte invasion by P. falciparum through a sialic acid independent pathway. PfRH2a/2b thus plays a key role in erythrocyte invasion and its conserved receptor-binding domain deserves attention as a promising candidate for inclusion in a blood-stage malaria vaccine

    Grounding Word Learning in Space

    Get PDF
    Humans and objects, and thus social interactions about objects, exist within space. Words direct listeners' attention to specific regions of space. Thus, a strong correspondence exists between where one looks, one's bodily orientation, and what one sees. This leads to further correspondence with what one remembers. Here, we present data suggesting that children use associations between space and objects and space and words to link words and objects—space binds labels to their referents. We tested this claim in four experiments, showing that the spatial consistency of where objects are presented affects children's word learning. Next, we demonstrate that a process model that grounds word learning in the known neural dynamics of spatial attention, spatial memory, and associative learning can capture the suite of results reported here. This model also predicts that space is special, a prediction supported in a fifth experiment that shows children do not use color as a cue to bind words and objects. In a final experiment, we ask whether spatial consistency affects word learning in naturalistic word learning contexts. Children of parents who spontaneously keep objects in a consistent spatial location during naming interactions learn words more effectively. Together, the model and data show that space is a powerful tool that can effectively ground word learning in social contexts

    A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    Get PDF
    Background: The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings: To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance: These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization

    Plasmodium falciparum Merozoite Invasion Is Inhibited by Antibodies that Target the PfRh2a and b Binding Domains

    Get PDF
    Plasmodium falciparum, the causative agent of the most severe form of malaria in humans invades erythrocytes using multiple ligand-receptor interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are important for entry of the invasive merozoite form of the parasite into red blood cells. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show they undergo a complex series of proteolytic cleavage events before and during merozoite invasion. We show that PfRh2a undergoes a cleavage event in the transmembrane region during invasion consistent with activity of the membrane associated PfROM4 protease that would result in release of the ectodomain into the supernatant. We also show that PfRh2a and PfRh2b bind to red blood cells and have defined the erythrocyte-binding domain to a 15 kDa region at the N-terminus of each protein. Antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain. This region of PfRh2a and PfRh2b has potential in a combination vaccine with other erythrocyte binding ligands for induction of antibodies that would block a broad range of invasion pathways for P. falciparum into human erythrocytes

    The Epistemic Status of Processing Fluency as Source for Judgments of Truth

    Get PDF
    This article combines findings from cognitive psychology on the role of processing fluency in truth judgments with epistemological theory on justification of belief. We first review evidence that repeated exposure to a statement increases the subjective ease with which that statement is processed. This increased processing fluency, in turn, increases the probability that the statement is judged to be true. The basic question discussed here is whether the use of processing fluency as a cue to truth is epistemically justified. In the present analysis, based on Bayes’ Theorem, we adopt the reliable-process account of justification presented by Goldman (1986) and show that fluency is a reliable cue to truth, under the assumption that the majority of statements one has been exposed to are true. In the final section, we broaden the scope of this analysis and discuss how processing fluency as a potentially universal cue to judged truth may contribute to cultural differences in commonsense beliefs

    Probabilistic Computation in Human Perception under Variability in Encoding Precision

    Get PDF
    A key function of the brain is to interpret noisy sensory information. To do so optimally, observers must, in many tasks, take into account knowledge of the precision with which stimuli are encoded. In an orientation change detection task, we find that encoding precision does not only depend on an experimentally controlled reliability parameter (shape), but also exhibits additional variability. In spite of variability in precision, human subjects seem to take into account precision near-optimally on a trial-to-trial and item-to-item basis. Our results offer a new conceptualization of the encoding of sensory information and highlight the brain’s remarkable ability to incorporate knowledge of uncertainty during complex perceptual decision-making
    corecore