696 research outputs found

    γ\gamma - Z interferometry at a Φ\Phi-factory

    Full text link
    We analyze the possibilities that the proposed Φ\Phi-factories offer to measure γZ\gamma-Z interference. In the unpolarized beam case, we study different signatures in the ρπ\rho \pi channel, taking advantage of the presence of the near-by a1a_1 resonance. We build a C-odd forward-backward asymmetry, estimated to be around 10510^{-5}, and (P-even, T-even) and (P-odd, T-odd) alignments of the ρ\rho, to be seen from the angular distribution of its ππ\pi \pi decay products. With polarized electrons a left-right asymmetry around 2×1042\times 10^{-4} is present in all channels. At leading order this asymmetry is independent of hadronic matrix elements and is sensitive to the Z0ssˉZ^0-s\bar{s} vector coupling. In the ρπ\rho \pi channel, a combined left-right forward-backward asymmetry is considered.Comment: 29 pages + 6 figures. Some changes concerning a1a_1 observables, especially related with possible 2 γ\gamma contribution

    Analytical approach to chiral symmetry breaking in Minkowsky space

    Full text link
    The mass gap equation for spontaneous chiral symmetry breaking is studied directly in Minkowsky space. In hadronic physics, spontaneous chiral symmetry breaking is crucial to generate a constituent mass for the quarks, and to produce the Partially Conserved Axial Current theorems, including a small mass for the pion. Here a class of finite kernels is used, expanded in Yukawa interactions. The Schwinger-Dyson equation is solved with an analytical approach. This improves the state of the art of solving the mass gap equation, which is usually solved with the equal-time approximation or with the Euclidean approximation. The mapping from the Euclidean space to the Minkowsky space is also illustrated.Comment: 7 pages, 3 figure

    Non-Equilibrium Statistical Physics of Currents in Queuing Networks

    Get PDF
    We consider a stable open queuing network as a steady non-equilibrium system of interacting particles. The network is completely specified by its underlying graphical structure, type of interaction at each node, and the Markovian transition rates between nodes. For such systems, we ask the question ``What is the most likely way for large currents to accumulate over time in a network ?'', where time is large compared to the system correlation time scale. We identify two interesting regimes. In the first regime, in which the accumulation of currents over time exceeds the expected value by a small to moderate amount (moderate large deviation), we find that the large-deviation distribution of currents is universal (independent of the interaction details), and there is no long-time and averaged over time accumulation of particles (condensation) at any nodes. In the second regime, in which the accumulation of currents over time exceeds the expected value by a large amount (severe large deviation), we find that the large-deviation current distribution is sensitive to interaction details, and there is a long-time accumulation of particles (condensation) at some nodes. The transition between the two regimes can be described as a dynamical second order phase transition. We illustrate these ideas using the simple, yet non-trivial, example of a single node with feedback.Comment: 26 pages, 5 figure

    The Frequency Dependent Conductivity of Electron Glasses

    Full text link
    Results of DC and frequency dependent conductivity in the quantum limit, i.e. hw > kT, for a broad range of dopant concentrations in nominally uncompensated, crystalline phosphorous doped silicon and amorphous niobium-silicon alloys are reported. These materials fall under the general category of disordered insulating systems, which are referred to as electron glasses. Using microwave resonant cavities and quasi-optical millimeter wave spectroscopy we are able to study the frequency dependent response on the insulating side of the metal-insulator transition. We identify a quantum critical regime, a Fermi glass regime and a Coulomb glass regime. Our phenomenological results lead to a phase diagram description, or taxonomy, of the electrodynamic response of electron glass systems

    CP violation in Bd,sl+lB_{d,s} \to l^+l^- in the model III 2HDM

    Full text link
    We have calculated the Wilson coefficients C10,CQiC_{10}, C_{Q_i} (i=1,2) in the MSˉ\bar{MS} renormalization scheme in the model III 2HDM. Using the obtained Wilson coefficients, we have analyzed the CP violation in decays Bq0l+lB^0_q\to l^+l^- (q=d,s) in the model. The CP asymmetry, ACPA_{CP}, depends on the parameters of models and ACPA_{CP} in Bdl+lB_d\to l^+l^- can be as large as 40% and 35% for l=τl=\tau and l=μl=\mu respectively. It can reach 4% for Bs0B^0_s decays. Because in SM CP violation is smaller than or equal to O(10310^{-3}) which is unobservably small, an observation of CP asymmetry in the decays Bq0l+l(q=d,s)B^0_q \to l^+l^- (q=d,s) would unambiguously signal the existence of new physics.Comment: revtex4, 16 pages, 7 figure

    Syndecan-1 regulates the biological activities of interleukin-34

    Get PDF
    IL-34 is a challenging cytokine sharing functional similarities with M-CSF through M-CSFR activation. It also plays a singular role that has recently been explained in the brain, through a binding to the receptor protein tyrosine phosphatase RPTPβ/ζ. The aim of this paper was to look for alternative binding of IL-34 on other cell types. Myeloid cells (HL-60, U-937, THP-1) were used as cells intrinsically expressing M-CSFR, and M-CSFR was expressed in TF-1 and HEK293 cells. IL-34 binding was studied by Scatchard and binding inhibition assays, using 125I-radiolabelled cytokines, and surface plasmon resonance. M-CSFR activation was analysed by Western blot after glycosaminoglycans abrasion, syndecan-1 overexpression or repression and addition of a blocking anti-syndecan antibody. M-CSF and IL-34 induced different patterns of M-CSFR phosphorylations, suggesting the existence of alternative binding for IL-34. Binding experiments and chondroitinase treatment confirmed low affinity binding to chondroitin sulphate chains on cells lacking both M-CSFR and RPTPβ/ζ. Amongst the proteoglycans with chondroitin sulphate chains, syndecan-1 was able to modulate the IL-34-induced M-CSFR signalling pathways. Interestingly, IL-34 induced the migration of syndecan-1 expressing cells. Indeed, IL-34 significantly increased the migration of THP-1 and M2a macrophages that was inhibited by addition of a blocking anti-syndecan-1 antibody. This paper provides evidence of alternative binding of IL-34 to chondroitin sulphates and syndecan-1 at the cell surface that modulates M-CSFR activation. In addition, IL-34-induced myeloid cell migration is a syndecan-1 dependent mechanism

    Drying nano particles solution on an oscillating tip at an air liquid interface: what we can learn, what we can do

    Get PDF
    Evaporation of fluid at micro and nanometer scale may be used to self-assemble nanometre-sized particles in suspension. Evaporating process can be used to gently control flow in micro and nanofluidics, thus providing a potential mean to design a fine pattern onto a surface or to functionalize a nanoprobe tip. In this paper, we present an original experimental approach to explore this open and rather virgin domain. We use an oscillating tip at an air liquid interface with a controlled dipping depth of the tip within the range of the micrometer. Also, very small dipping depths of a few ten nanometers were achieved with multi walls carbon nanotubes glued at the tip apex. The liquid is an aqueous solution of functionalized nanoparticles diluted in water. Evaporation of water is the driving force determining the arrangement of nanoparticles on the tip. The results show various nanoparticles deposition patterns, from which the deposits can be classified in two categories. The type of deposit is shown to be strongly dependent on whether or not the triple line is pinned and of the peptide coating of the gold nanoparticle. In order to assess the classification, companion dynamical studies of nanomeniscus and related dissipation processes involved with thinning effects are presented

    Protons in near earth orbit

    Get PDF
    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is parameterized by a power law. Below the geomagnetic cutoff a substantial second spectrum was observed concentrated at equatorial latitudes with a flux ~ 70 m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure
    corecore