172 research outputs found

    The association of patient trust and self-care among patients with diabetes mellitus

    Get PDF
    BACKGROUND: Diabetes requires significant alterations to lifestyle and completion of self management tasks to obtain good control of disease. The objective of this study was to determine if patient trust is associated with reduced difficulty and hassles in altering lifestyle and completing self care tasks. METHODS: A cross-sectional telephone survey and medical record review was performed to measure patient trust and difficulty in completing diabetes tasks among 320 medically underserved patients attending diabetes programs in rural North Carolina, USA. Diabetes tasks were measured three ways: perceived hassles of diabetic care activities, difficulty in completing diabetes-related care activities, and a global assessment of overall ability to complete diabetes care activities. The association of patient trust with self-management was examined after controlling for patient demographics, physical functioning, mental health and co-morbidities. RESULTS: Level of patient trust was high (median 22, possible max 25). Higher trust levels were associated with lower levels of hassles (p = 0.006) and lower difficulty in completing care activities (p = 0.001). Patients with higher trust had better global assessments of overall ability to complete diabetes care activities (p < 0.0001). CONCLUSION: Higher patient trust in physicians is associated with reduced difficulty in completing disease specific tasks by patients. Further studies are needed to determine the causal relationship of this association, the effect of trust on other outcomes, and the potential modifiability of trus

    Impact of Orthologous Gene Replacement on the Circuitry Governing Pilus Gene Transcription in Streptococci

    Get PDF
    The evolutionary history of several genes of the bacterial pathogen Streptococcus pyogenes strongly suggests an origin in another species, acquired via replacement of the counterpart gene (ortholog) following a recombination event. An example of orthologous gene replacement is provided by the nra/rofA locus, which encodes a key regulator of pilus gene transcription. Of biological importance is the previous finding that the presence of the nra- and rofA-lineage alleles, which are approximately 35% divergent, correlates strongly with genetic markers for streptococcal infection at different tissue sites in the human host (skin, throat).In this report, the impact of orthologous gene replacement targeting the nra/rofA locus is experimentally addressed. Replacement of the native nra-lineage allele with a rofA-lineage allele, plus their respective upstream regions, preserved the polarity of Nra effects on pilus gene transcription (i.e., activation) in the skin strain Alab49. Increased pilus gene transcription in the rofA chimera correlated with a higher rate of bacterial growth at the skin. The transcriptional regulator MsmR, which represses nra and pilus gene transcription in the Alab49 parent strain, has a slight activating effect on pilus gene expression in the rofA chimera construct.Data show that exchange of orthologous forms of a regulatory gene is stable and robust, and pathogenicity is preserved. Yet, new phenotypes may also be introduced by altering the circuitry within a complex transcriptional regulatory network. It is proposed that orthologous gene replacement via interspecies exchange is an important mechanism in the evolution of highly recombining bacteria such as S. pyogenes

    Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser

    Get PDF
    This study presents a simple and sustainable Microbial Fuel Cell as a standalone, self-powered reactor for in situ wastewater electrolysis, recovering nitrogen from wastewater. A process is proposed whereby the MFC electrical performance drives the electrolysis of wastewater towards the self-generation of catholyte within the same reactor. The MFCs were designed to harvest the generated catholyte in the internal chamber, which showed that liquid production rates are largely proportional to electrical current generation. The catholyte demonstrated bactericidal properties, compared to the control (open-circuit) diffusate, and reduced observable biofilm formation on the cathode electrode. Killing effects were confirmed using bacterial kill curves constructed by exposing a bioluminescent Escherichia coli target, as a surrogate coliform, to catholyte where a rapid kill rate was observed. Therefore, MFCs could serve as a water recovery system, a disinfectant/cleaner generator that limits undesired biofilm formation and as a washing agent in waterless urinals to improve sanitation. This simple and ready to implement MFC system can convert organic waste directly into electricity and self-driven nitrogen along with water recovery. This could lead to the development of energy positive bioprocesses for sustainable wastewater treatment

    Burkholderia mallei expresses a unique lipopolysaccharide mixture that is a potent activator of human Toll-like receptor 4 complexes

    Get PDF
    Burkholderia mallei, the aetiologic agent of glanders, causes a variety of illnesses in animals and humans ranging from occult infections to acute fulminating septicaemias. To better understand the role of lipopolysaccharide (LPS) in the pathogenesis of these diseases, studies were initiated to characterize the structural and biological properties of lipid A moieties expressed by this organism. Using a combination of chemical analyses and MALDI-TOF mass spectrometry, B. mallei was shown to express a heterogeneous mixture of tetra- and penta-acylated lipid A species that were non-stoichiometrically substituted with 4-amino-4-deoxy-arabinose residues. The major penta-acylated species consisted of bisphosphorylated d-glucosamine disaccharide backbones possessing two amide linked 3-hydroxyhexadecanoic acids, two ester linked 3-hydroxytetradecanoic acids [C14:0(3-OH)] and an acyloxyacyl linked tetradecanoic acid, whereas, the major tetra-acylated species possessed all but the 3′-linked C14:0(3-OH) residues. In addition, although devoid of hexa-acylated species, B. mallei LPS was shown to be a potent activator of human Toll-like receptor 4 complexes and stimulated human macrophage-like cells (THP-1 and U-937), monocyte-derived macrophages and dendritic cells to produce high levels of TNF-α, IL-6 and RANTES. Based upon these results, it appears that B. mallei LPS is likely to play a significant role in the pathogenesis of human disease

    Synergistic antimicrobial interaction between honey and phage against Escherichia coli biofilms

    Get PDF
    CEB Annual Meeting 2017Chronic wounds that take months, years or may even never heal present a major biological and financial problem on both individual patients and the broader health system. Chronic wounds afford a hostile environment of damaged tissues that allow bacterial proliferation and further wound colonization. Wound colonization by bacterial biofilms is one of the main obstacles of chronic wounds healing. Biofilms are structured communities of bacterial cells enclosed in a self-produced polymeric matrix and adhered to an inert or living surface. Escherichia coli is among the most common colonizers of infected wounds and it is a prolific biofilm former. Living in biofilm communities, cells are protected, become more difficult to control and eradicate, and less susceptible to antibiotic therapy. Due to the vast increase of antibiotic resistant bacteria, there is a renewed interestin pre-antibiotic therapies. Years before the discovery of modern antibiotics, bacteriophages(phages) that are bacterial viruses, and beehive products such as honey were extensively used for their antimicrobial properties. Phages, are the natural bacterial enemies and have proven efficacy towards antibiotic-resistant bacteria, have self-replicating nature, do not interfere with the commensal flora and many studies acknowledge that phages can destroy, tovarying extent, mono and mixed biofilm populations. Honey, on the other hand, has a broad spectrum antibacterial activity against bacteria and its high viscosity provides a protective barrier against infections being suitable for skincare, promoting the wound healing, tissue regeneration and anti-inflammatory process. This work presents insights into the proceedings triggering E.coli biofilm control with phage, two Portuguese(PT) honeys and their combination, achieved through standard antimicrobial activity assays, zeta potential and flow cytometry studies and further visual insights sought by SEM and TEM microscopy.This study was supported by FCT under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorteoperation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Comparative genomics of prevaccination and modern Bordetella pertussis strains

    Get PDF
    Contains fulltext : 89571.pdf (publisher's version ) (Open Access)BACKGROUND: Despite vaccination since the 1950s, pertussis has persisted and resurged. It remains a major cause of infant death worldwide and is the most prevalent vaccine-preventable disease in developed countries. The resurgence of pertussis has been associated with the expansion of Bordetella pertussis strains with a novel allele for the pertussis toxin (Ptx) promoter, ptxP3, which have replaced resident ptxP1 strains. Compared to ptxP1 strains, ptxP3 produce more Ptx resulting in increased virulence and immune suppression. To elucidate how B. pertussis has adapted to vaccination, we compared genome sequences of two ptxP3 strains with four strains isolated before and after the introduction vaccination. RESULTS: The distribution of SNPs in regions involved in transcription and translation suggested that changes in gene regulation play an important role in adaptation. No evidence was found for acquisition of novel genes. Modern strains differed significantly from prevaccination strains, both phylogenetically and with respect to particular alleles. The ptxP3 strains were found to have diverged recently from modern ptxP1 strains. Differences between ptxP3 and modern ptxP1 strains included SNPs in a number of pathogenicity-associated genes. Further, both gene inactivation and reactivation was observed in ptxP3 strains relative to modern ptxP1 strains. CONCLUSIONS: Our work suggests that B. pertussis adapted by successive accumulation of SNPs and by gene (in)activation. In particular changes in gene regulation may have played a role in adaptation

    Salmonella Biofilm Formation on Aspergillus niger Involves Cellulose – Chitin Interactions

    Get PDF
    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose–chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens

    Administration of M. leprae Hsp65 Interferes with the Murine Lupus Progression

    Get PDF
    The heat shock protein [Hsp] family guides several steps during protein synthesis, are abundant in prokaryotic and eukaryotic cells, and are highly conserved during evolution. The Hsp60 family is involved in assembly and transport of proteins, and is expressed at very high levels during autoimmunity or autoinflammatory phenomena. Here, the pathophysiological role of the wild type [WT] and the point mutated K409A recombinant Hsp65 of M. leprae in an animal model of Systemic Lupus Erythematosus [SLE] was evaluated in vivo using the genetically homogeneous [NZBxNZW]F1 mice. Anti-DNA and anti-Hsp65 antibodies responsiveness was individually measured during the animal's life span, and the mean survival time [MST] was determined. The treatment with WT abbreviates the MST in 46%, when compared to non-treated mice [p<0.001]. An increase in the IgG2a/IgG1 anti-DNA antibodies ratio was also observed in animals injected with the WT Hsp65. Incubation of BALB/c macrophages with F1 serum from WT treated mice resulted in acute cell necrosis; treatment of these cells with serum from K409A treated mice did not cause any toxic effect. Moreover, the involvement of WT correlates with age and is dose-dependent. Our data suggest that Hsp65 may be a central molecule intervening in the progression of the SLE, and that the point mutated K409A recombinant immunogenic molecule, that counteracts the deleterious effect of WT, may act mitigating and delaying the development of SLE in treated mice. This study gives new insights into the general biological role of Hsp and the significant impact of environmental factors during the pathogenesis of this autoimmune process

    Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function.

    Get PDF
    Understanding the role of basal bodies (BBs) during development and disease has been largely overshadowed by research into the function of the cilium. Although these two organelles are closely associated, they have specific roles to complete for successful cellular development. Appropriate development and function of the BB are fundamental for cilia function. Indeed, there are a growing number of human genetic diseases affecting ciliary development, known collectively as the ciliopathies. Accumulating evidence suggests that BBs establish cell polarity, direct ciliogenesis, and provide docking sites for proteins required within the ciliary axoneme. Major contributions to our knowledge of BB structure and function have been provided by studies in flagellated or ciliated unicellular eukaryotic organisms, specifically Tetrahymena and Chlamydomonas. Reproducing these and other findings in vertebrates has required animal in vivo models. Zebrafish have fast become one of the primary organisms of choice for modeling vertebrate functional genetics. Rapid ex-utero development, proficient egg laying, ease of genetic manipulation, and affordability make zebrafish an attractive vertebrate research tool. Furthermore, zebrafish share over 80 % of disease causing genes with humans. In this article, we discuss the merits of using zebrafish to study BB functional genetics, review current knowledge of zebrafish BB ultrastructure and mechanisms of function, and consider the outlook for future zebrafish-based BB studies
    corecore