117 research outputs found
Water Resource Planning Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India
Decision-Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi-method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder-identified decision-critical metrics are examined: a basin-wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade-offs emerge between intrabasin and basin-wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long-term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision-making under deep uncertainty
Recommended from our members
Weather, climate and the nature of predictability
The prediction and simulation of future weather and climate is a key ingredient in good weather risk management. This chapter briefly reviews the nature and underlying sources of predictability on timescales from hours-ahead to centuries-ahead. The traditional distinction between ‘weather’ and ‘climate’ predictions is described, and the role of recent scientific developments in driving a convergence of these two classic problems is highlighted. The chapter concludes by outlining and comparing the two main strategies used for creating weather and climate predictions, and discussing the challenges of using predictions in quantitative applications
Recommended from our members
Irreducible uncertainty in near-term climate projections
Model simulations of the next few decades are widely used in assessments of climate change impacts and as guidance for adaptation. Their non-linear nature reveals a level of irreducible uncertainty which it is important to understand and quantify, especially for projections of near-term regional climate. Here we use large idealised initial condition ensembles of the FAMOUS global climate model with a 1 %/year compound increase in CO2 levels to quantify the range of future temperatures in model-based projections. These simulations explore the role of both atmospheric and oceanic initial conditions and are the largest such ensembles to date. Short-term simulated trends in global temperature are diverse, and cooling periods are more likely to be followed by larger warming rates. The spatial pattern of near-term temperature change varies considerably, but the proportion of the surface showing a warming is more consistent. In addition, ensemble spread in inter-annual temperature declines as the climate warms, especially in the North Atlantic. Over Europe, atmospheric initial condition uncertainty can, for certain ocean initial conditions, lead to 20 year trends in winter and summer in which every location can exhibit either strong cooling or rapid warming. However, the details of the distribution are highly sensitive to the ocean initial condition chosen and particularly the state of the Atlantic meridional overturning circulation. On longer timescales, the warming signal becomes more clear and consistent amongst different initial condition ensembles. An ensemble using a range of different oceanic initial conditions produces a larger spread in temperature trends than ensembles using a single ocean initial condition for all lead times. This highlights the potential benefits from initialising climate predictions from ocean states informed by observations. These results suggest that climate projections need to be performed with many more ensemble members than at present, using a range of ocean initial conditions, if the uncertainty in near-term regional climate is to be adequately quantified
Climate dynamics and fluid mechanics: Natural variability and related uncertainties
The purpose of this review-and-research paper is twofold: (i) to review the
role played in climate dynamics by fluid-dynamical models; and (ii) to
contribute to the understanding and reduction of the uncertainties in future
climate-change projections. To illustrate the first point, we focus on the
large-scale, wind-driven flow of the mid-latitude oceans which contribute in a
crucial way to Earth's climate, and to changes therein. We study the
low-frequency variability (LFV) of the wind-driven, double-gyre circulation in
mid-latitude ocean basins, via the bifurcation sequence that leads from steady
states through periodic solutions and on to the chaotic, irregular flows
documented in the observations. This sequence involves local, pitchfork and
Hopf bifurcations, as well as global, homoclinic ones. The natural climate
variability induced by the LFV of the ocean circulation is but one of the
causes of uncertainties in climate projections. Another major cause of such
uncertainties could reside in the structural instability in the topological
sense, of the equations governing climate dynamics, including but not
restricted to those of atmospheric and ocean dynamics. We propose a novel
approach to understand, and possibly reduce, these uncertainties, based on the
concepts and methods of random dynamical systems theory. As a very first step,
we study the effect of noise on the topological classes of the Arnol'd family
of circle maps, a paradigmatic model of frequency locking as occurring in the
nonlinear interactions between the El Nino-Southern Oscillations (ENSO) and the
seasonal cycle. It is shown that the maps' fine-grained resonant landscape is
smoothed by the noise, thus permitting their coarse-grained classification.
This result is consistent with stabilizing effects of stochastic
parametrization obtained in modeling of ENSO phenomenon via some general
circulation models.Comment: Invited survey paper for Special Issue on The Euler Equations: 250
  Years On, in Physica D: Nonlinear phenomen
Recommended from our members
Identifying uncertainties in Arctic climate change projections
Wide ranging climate changes are expected in the Arctic by the end of the 21st century, but projections of the size of these changes vary widely across current global climate models. This variation represents a large source of uncertainty in our understanding of the evolution of Arctic climate. Here we systematically quantify and assess the model uncertainty in Arctic climate changes in two CO2 doubling experiments: a multimodel ensemble (CMIP3) and an ensemble constructed using a single model (HadCM3) with multiple parameter perturbations (THC-QUMP). These two ensembles allow us to assess the contribution that both structural and parameter variations across models make to the total uncertainty and to begin to attribute sources of uncertainty in projected changes. We find that parameter uncertainty is an major source of uncertainty in certain aspects of Arctic climate. But also that uncertainties in the mean climate state in the 20th century, most notably in the northward Atlantic ocean heat transport and Arctic sea ice volume, are a significant source of uncertainty for projections of future Arctic change. We suggest that better observational constraints on these quantities will lead to significant improvements in the precision of projections of future Arctic climate change
Recommended from our members
A common framework for approaches to extreme event attribution
The extent to which a given extreme weather or climate event is attributable to anthropogenic climate change
is a question of considerable public interest. From a scientific perspective, the question can be framed in various ways, and the answer depends very much on the framing. One such framing is a risk-based approach, which answers the question probabilistically, in terms of a change in likelihood of a class of event similar to the one in question, and natural variability is treated as noise. A rather different framing is a storyline approach, which examines the role of the various factors contributing
to the event as it unfolded, including the anomalous
aspects of natural variability, and answers the question deterministically. It is argued that these two apparently irreconcilable approaches can be viewed within a common framework, where the most useful level of conditioning will depend on the question being asked and the uncertainties involved
Recommended from our members
Towards a typology for constrained climate model forecasts
In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context
Global economic impacts of climate variability and change during the 20th century
Estimates of the global economic impacts of observed climate change during the 20th century obtained by applying five impact functions of different integrated assessment models (IAMs) are separated into their main natural and anthropogenic components. The estimates of the costs that can be attributed to natural variability factors and to the anthropogenic intervention with the climate system in general tend to show that: 1) during the first half of the century, the amplitude of the impacts associated with natural variability is considerably larger than that produced by anthropogenic factors and the effects of natural variability fluctuated between being negative and positive. These non-monotonic impacts are mostly determined by the low-frequency variability and the persistence of the climate system; 2) IAMs do not agree on the sign (nor on the magnitude) of the impacts of anthropogenic forcing but indicate that they steadily grew over the first part of the century, rapidly accelerated since the mid 1970's, and decelerated during the first decade of the 21st century. This deceleration is accentuated by the existence of interaction effects between natural variability and natural and anthropogenic forcing. The economic impacts of anthropogenic forcing range in the tenths of percentage of the world GDP by the end of the 20th century; 3) the impacts of natural forcing are about one order of magnitude lower than those associated with anthropogenic forcing and are dominated by the solar forcing; 4) the interaction effects between natural and anthropogenic factors can importantly modulate how impacts actually occur, at least for moderate increases in external forcing. Human activities became dominant drivers of the estimated economic impacts at the end of the 20th century, producing larger impacts than those of low-frequency natural variability. Some of the uses and limitations of IAMs are discussed
- …
