254 research outputs found

    Evolution of an eruptive flare loop system

    Get PDF
    <p><b>Context:</b> Flares, eruptive prominences and coronal mass ejections are phenomena where magnetic reconnection plays an important role. However, the location and the rate of the reconnection, as well as the mechanisms of particle interaction with ambient and chromospheric plasma are still unclear.</p> <p><b>Aims:</b> In order to contribute to the comprehension of the above mentioned processes we studied the evolution of the eruptive flare loop system in an active region where a flare, a prominence eruption and a CME occurred on August 24, 2002.</p> <p><b>Methods:</b> We measured the rate of expansion of the flare loop arcade using TRACE 195 Å images and determined the rising velocity and the evolution of the low and high energy hard X-ray sources using RHESSI data. We also fitted HXR spectra and considered the radio emission at 17 and 34 GHZ.</p> <p><b>Results:</b> We observed that the top of the eruptive flare loop system initially rises with a linear behavior and then, after 120 mn from the start of the event registered by GOES at 1–8 Å, it slows down. We also observed that the heating source (low energy X-ray) rises faster than the top of the loops at 195 Å and that the high energy X-ray emission (30–40 keV) changes in time, changing from footpoint emission at the very onset of the flare to being coincident during the flare peak with the whole flare loop arcade.</p> <p><b>Conclusions:</b> The evolution of the loop system and of the X-ray sources allowed us to interpret this event in the framework of the Lin & Forbes model (2000), where the absolute rate of reconnection decreases when the current sheet is located at an altitude where the Alfvén speed decreases with height. We estimated that the lower limit for the altitude of the current sheet is km. Moreover, we interpreted the unusual variation of the high energy HXR emission as a manifestation of the non thermal coronal thick-target process which appears during the flare in a manner consistent with the inferred increase in coronal column density.</p&gt

    U-Pb memory behavior in Chicxulub's peak ring - Applying U-Pb depth profiling to shocked zircon

    Get PDF
    The zircon U-Pb system is one of the most robust geochronometers, but during an impact event individual crystals can be affected differently by the passage of the shock wave and impact generated heat. Unraveling the potentially complex thermal history recorded by zircon crystals that experienced variable levels of shock and heating, as well as additioanl pre- and post-impact thermal events, has been difficult using classical geochronological methods. The existing high-precision 40Ar/39Ar age constraints for the K-Pg Chicxulub event, and the previous U-Pb dating of the basement rocks from the impact site, make Chicxulub an ideal location to study impact-induced effects on the zircon U-Pb systematics and to evaluate potential 'memory effects' of pre-impact U-Pb signatures preserved within those individual zircon crystals. Recent IODP-ICDP drilling of the Chicxulub impact structure recovered 580 m of uplifted shocked granitoid and 130 m of melt and suevite, providing an unprecedented opportunity to study zircon crystals subjected to a range of shock pressures, thermal, and deformational histories. Zircon morphologies were classified using scanning electron microscopy (SEM) imaging and then samples were depth profiled using laser ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS) to document the range of preserved age domains from rim-to-center within individual crystals. The results show U-Pb ages range from 66 to 472 Ma, which are consistent with both inherited Carboniferous and Late Paleozoic basement ages as well as Pb loss ages in response to the K-Pg impact event. While the bulk of the zircon grains preserve Paleozoic ages, high U (metamict) zones within fractured zircon crystals exhibited an age within uncertainty (66 ± 6.2 Ma) of the impact age (66.038 ± 0.049 Ma), indicating that inherited intragrain U-Pb kinetics and/or hydrothermal fluid flow may have controlled age resetting those zircon crystals rather than impact-induced shock and heating alone. Moreover, the calculated α-decay doses suggest that the zircon crystals experienced Stage 1 or early Stage 2 radiation damage accumulation. Therefore, we suggest that the lowered crystal annealing temperature in crystals that previoulsy experienced radiation damage make the zircon U-Pb clock either more susceptible to the relatively short heat pulse of the impact event, the moderate pressure and temperature conditions in the peak ring, and/or to hot-fluid flow in the long-lasting post impact hydrothermal system

    Ambulance location for maximum survival

    Get PDF
    This article proposes new location models for emergency medical service stations. The models are generated by incorporating a survival function into existing covering models. A survival function is a monotonically decreasing function of the response time of an emergency medical service (EMS) vehicle to a patient that returns the probability of survival for the patient. The survival function allows for the calculation of tangible outcome measures—the expected number of survivors in case of cardiac arrests. The survival-maximizing location models are better suited for EMS location than the covering models which do not adequately differentiate between consequences of different response times. We demonstrate empirically the superiority of the survival-maximizing models using data from the Edmonton EMS system.NSERCpre-prin

    Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets

    Get PDF
    High-throughput sequencing technologies have strongly impacted microbiology, providing a rapid and cost-effective way of generating draft genomes and exploring microbial diversity. However, sequences obtained from impure nucleic acid preparations may contain DNA from sources other than the sample. Those sequence contaminations are a serious concern to the quality of the data used for downstream analysis, causing misassembly of sequence contigs and erroneous conclusions. Therefore, the removal of sequence contaminants is a necessary and required step for all sequencing projects. We developed DeconSeq, a robust framework for the rapid, automated identification and removal of sequence contamination in longer-read datasets (150 bp mean read length). DeconSeq is publicly available as standalone and web-based versions. The results can be exported for subsequent analysis, and the databases used for the web-based version are automatically updated on a regular basis. DeconSeq categorizes possible contamination sequences, eliminates redundant hits with higher similarity to non-contaminant genomes, and provides graphical visualizations of the alignment results and classifications. Using DeconSeq, we conducted an analysis of possible human DNA contamination in 202 previously published microbial and viral metagenomes and found possible contamination in 145 (72%) metagenomes with as high as 64% contaminating sequences. This new framework allows scientists to automatically detect and efficiently remove unwanted sequence contamination from their datasets while eliminating critical limitations of current methods. DeconSeq's web interface is simple and user-friendly. The standalone version allows offline analysis and integration into existing data processing pipelines. DeconSeq's results reveal whether the sequencing experiment has succeeded, whether the correct sample was sequenced, and whether the sample contains any sequence contamination from DNA preparation or host. In addition, the analysis of 202 metagenomes demonstrated significant contamination of the non-human associated metagenomes, suggesting that this method is appropriate for screening all metagenomes. DeconSeq is available at http://deconseq.sourceforge.net/

    Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes

    Get PDF
    Background: Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. Results: The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. Conclusions: The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.Spanish Ministry of Science and Innovation [CGL2013-45211-C2-2-P, CGL2016-75255-C2-1-P, BES-2011-051469, BES-2014-069575, Doctorado Nacional-567]info:eu-repo/semantics/publishedVersio

    Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy

    Get PDF
    <p>Background: Statin therapy reduces the risk of occlusive vascular events, but uncertainty remains about potential effects on cancer. We sought to provide a detailed assessment of any effects on cancer of lowering LDL cholesterol (LDL-C) with a statin using individual patient records from 175,000 patients in 27 large-scale statin trials.</p> <p>Methods and Findings: Individual records of 134,537 participants in 22 randomised trials of statin versus control (median duration 4.8 years) and 39,612 participants in 5 trials of more intensive versus less intensive statin therapy (median duration 5.1 years) were obtained. Reducing LDL-C with a statin for about 5 years had no effect on newly diagnosed cancer or on death from such cancers in either the trials of statin versus control (cancer incidence: 3755 [1.4% per year [py]] versus 3738 [1.4% py], RR 1.00 [95% CI 0.96-1.05]; cancer mortality: 1365 [0.5% py] versus 1358 [0.5% py], RR 1.00 [95% CI 0.93–1.08]) or in the trials of more versus less statin (cancer incidence: 1466 [1.6% py] vs 1472 [1.6% py], RR 1.00 [95% CI 0.93–1.07]; cancer mortality: 447 [0.5% py] versus 481 [0.5% py], RR 0.93 [95% CI 0.82–1.06]). Moreover, there was no evidence of any effect of reducing LDL-C with statin therapy on cancer incidence or mortality at any of 23 individual categories of sites, with increasing years of treatment, for any individual statin, or in any given subgroup. In particular, among individuals with low baseline LDL-C (<2 mmol/L), there was no evidence that further LDL-C reduction (from about 1.7 to 1.3 mmol/L) increased cancer risk (381 [1.6% py] versus 408 [1.7% py]; RR 0.92 [99% CI 0.76–1.10]).</p> <p>Conclusions: In 27 randomised trials, a median of five years of statin therapy had no effect on the incidence of, or mortality from, any type of cancer (or the aggregate of all cancer).</p&gt

    Multi-tissue transcriptomes of caecilian amphibians highlight incomplete knowledge of vertebrate gene families

    Get PDF
    RNA sequencing (RNA-seq) has become one of the most powerful tools to unravel the genomic basis of biological adaptation & diversity. Although challenging, RNA-seq is particularly promising for research on non-model, secretive species that cannot be observed in nature easily and therefore remain comparatively understudied. Among such animals, the caecilians (order Gymnophiona) likely constitute the least known group of vertebrates, despite being an old and remarkably distinct lineage of amphibians. Here, we characterize multi-tissue transcriptomes for five species of caecilians that represent a broad level of diversity across the order. We identified vertebrate homologous elements of caecilian functional genes of varying tissue specificity that reveal a great number of unclassified gene families, especially for the skin. We annotated several protein domains for those unknown candidate gene families to investigate their function. We also conducted supertree analyses of a phylogenomic dataset of 1,955 candidate orthologous genes among five caecilian species and other major lineages of vertebrates, with the inferred tree being in agreement with current views of vertebrate evolution and systematics. Our study provides insights into the evolution of vertebrate protein-coding genes, and a basis for future research on the molecular elements underlying the particular biology and adaptations of caecilian amphibians

    The Association of Left Ventricular Hypertrophy with Metabolic Syndrome is Dependent on Body Mass Index in Hypertensive Overweight or Obese Patients

    Get PDF
    Overweight (Ow) and obesity (Ob) influence blood pressure (BP) and left ventricular hypertrophy (LVH). It is unclear whether the presence of metabolic syndrome (MetS) independently affects echocardiographic parameters in hypertension.380 Ow/Ob essential hypertensive patients (age ≤ 65 years) presenting for referred BP control-related problems. MetS was defined according to NCEP III/ATP with AHA modifications and LVH as LVM/h(2.7) ≥ 49.2 g/m(2.7) in males and ≥ 46.7 g/m(2.7) in females. Treatment intensity score (TIS) was used to control for BP treatment as previously reported.Hypertensive patients with MetS had significantly higher BMI, systolic and mean BP, interventricular septum and relative wall thickness and lower ejection fraction than those without MetS. LVM/h(2.7) was significantly higher in MetS patients (59.14 ± 14.97 vs. 55.33 ± 14.69 g/m(2.7); p = 0.022). Hypertensive patients with MetS had a 2.3-fold higher risk to have LVH/h(2.7) after adjustment for age, SBP and TIS (OR 2.34; 95%CI 1.40-3.92; p = 0.001), but MetS lost its independent relationship with LVH when BMI was included in the model.In Ow/Ob hypertensive patients MetS maintains its role of risk factor for LVH independently of age, SBP, and TIS, resulting in a useful predictor of target organ damage in clinical practice. However, MetS loses its independent relationship when BMI is taken into account, suggesting that the effects on MetS on LV parameters are mainly driven by the degree of adiposity

    De Novo assembly and transcriptome analysis of the mediterranean fruit fly ceratitis capitata early embryos

    Get PDF
    The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing geneticbased pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8-10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae
    corecore