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Abstract 

This paper proposes new location models for emergency medical service stations.  The 
models are generated by incorporating a survival function into existing covering models.  A 
survival function is a monotonically decreasing function of the response time of an EMS 
vehicle to a patient that returns the probability of survival for the patient.  The survival 
function allows for the calculation of tangible outcome measures—the expected number of 
survivors in case of cardiac arrests.  The survival-maximizing location models are better 
suited for EMS location than the covering models which do not adequately differentiate 
between consequences of different response times.  We demonstrate empirically the 
superiority of the survival-maximizing models using data from the Edmonton EMS system. 
 

Keywords: ambulance location, covering models, survival function. 
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1. Introduction 
 
The goal of this paper is to question a widely-used modeling construct (“coverage”) and a 
related performance measure (fraction of calls reached within some time standard) for 
emergency medical service (EMS) systems, and offer a superior alternative which takes 
advantage of medical research on the relationship between response times and survival rates.  
We show how nonlinear survival functions can be incorporated into EMS location models 
and we offer computational evidence based on realistic data to support our claim of 
superiority.  
   
The units of measurement matter for EMS performance measures, just like they matter for 
other organizations.  Metrics in concrete, easily interpreted units, such as dollars or lives 
saved, get more attention and facilitate comparisons between competing uses of funds.  
Ideally, EMS planning would be driven by input-output relations linking resource allocation 
to patient outcomes, as argued by Willemain (1975).  It also matters whether standards are set 
locally or nationally.  As an example, for fire services, standards that are followed in the US 
and Canada are set by the National Fire Prevention Association.  The insurance industry 
ranks fire departments based on adherence to such standards, and when they are not met, 
insurance rates may rise (Pedersen, 2002).  Thus, there is a direct link between failure to meet 
standards and (monetary) outcomes.  This is not the case for EMS coverage standards, which 
vary even between communities in close proximity to each other (for example, see Moeller, 
2004).  Davis (2003a) argues that emergency services in most U.S. cities “don’t know how 
many lives they’re losing, so they can’t determine ways to increase survival rates.”  We will 
take as given that the real objective for an EMS system is to maximize the number of patients 
that survive and that coverage is used as a proxy for the real objective.  There are other 
measures that matter, such as life expectancy and quality of life for survivors.  However, it is 
unclear to what extent faster EMS response times influence such secondary measures.  Yet 
there is clear evidence that faster response times can save lives of cardiac arrest patients. 
 
The problem of selecting the locations of emergency medical service (EMS) vehicles has 
been quite popular among operations researchers.  Such models typically focus on either 
coverage or average response time—two performance measures that were discussed in an 
early survey paper by Chaiken and Larson (1972). In one of the earliest papers on this topic, 
Toregas et al. (1971) developed a coverage model, which minimizes the number of facilities 
needed to serve a set of given demand nodes.  The coverage concept utilizes a travel distance 
(or time) standard for service delivery.  All demand points that are within this threshold 
distance to a service facility are considered to be served by the facility, i.e., covered.  Hence, 
for a given set of facility locations and demand points, the covering model classifies the 
demand points into two sets: those that are covered and those that are not.  The set cover 
model of Toregas et al. (1971) minimizes the number of facilities so that all demand points 
are covered, and the max cover model of Church and Revelle (1974) maximizes the demand 
covered with a given number of facilities. 
 
Coverage models have been used frequently by researchers and practitioners for the 
following reasons: 

- The concept is simple to communicate to decision-makers and the public (a call is 
either covered or not). 

- Many EMS systems use the percentage of calls covered as a performance measure.   
Perhaps the most common EMS standard is to respond to 90% of all urgent calls 
within 8 minutes (De Maio et al., 2003). 
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- Deterministic coverage models typically result in integer programs that are easy to 
solve using standard optimization software. 

Despite these advantages, the black-and-white nature of the coverage concept is an important 
limitation, and standard coverage models should not be used for EMS vehicle location.  First, 
coverage can result in large measurement errors because of their limited ability to 
discriminate between different response times.  Second, these measurement errors are likely 
to result in large optimality errors when one uses covering models to locate emergency 
facilities instead of a model that takes survival probabilities into account.  The following 
example demonstrates that the optimality error can be arbitrarily large. 
 
Example: Assume that demand locations A and B in Figure 1 are 18 minutes apart, and a 
station is located at X, halfway between them.  A covering model with a covering radius of 9 
minutes would count all demand at A and B as covered, so X is the optimal location, 
regardless of the relative magnitude of the demands.  Suppose the demand at A is 10, the 
demand at B is 1, and the survival probability as a function of the response time t is exp(-t).  
Hence, if the emergency facility is located at X, then Pr{survival at A} = Pr{survival at B} = 
exp(-9) = 0.000123, and the expected number of survivors in the system is 11 × 0.000123 = 
0.001358.  If the station is located at A instead, then the expected number of survivors 
increases to 10, which is over 7,000 times better.  This ratio can be made arbitrarily large by 
increasing the demand at A.  As this (admittedly pathological) example demonstrates, 
covering models can result in arbitrarily poor location decisions for emergency facilities.  
 
 
 
               A    X    B 
 
 
 
Figure 1: An example depicting the difference of “coverage” and “survival.” 
 
Although this example is artificial, it illustrates the real and important issue of whether EMS 
response time standards should be the same regardless of population density.  Economies of 
scale make it less expensive to provide a given level of service in urban areas than in rural 
areas.  Similarly, service can be provided more efficiently in the densely populated center of 
a city than in the more spread out suburban areas.  The objectives of providing equal access 
to EMS versus maximizing the total number of survivors lead to different deployment 
patterns (Felder and Brinkmann, 2002).  Response time standards and actual performance are 
typically different for urban and rural areas in the US, UK, and Germany (see Fitch, 2005, 
and Felder and Brinkmann, 2002), indicating that the standard setters have decided against 
equal access.  According to these references, the most common standards in North America 
are to reach 90% of calls in 9, 15, and 30 minutes for urban, rural, and wilderness areas, 
respectively.  In the UK, a national standard calls for reaching 75% of calls in 8 minutes, 
regardless of location.  Furthermore, 95% of urban calls should be reached in 14 minutes in 
urban areas and 19 minutes in rural areas.  German standards vary across the country, 
requiring that 95% of calls be reached within statutory response times that range from 10 to 
15 minutes.  These issues raise important ethical concerns, some of which are addressed by 
Felder and Brinkmann (2002).  As they point out, although a policy of equal access seems 
difficult to criticize, such a policy implies that lives are valued differently in different areas, 
because the cost of saving a life can be much higher in sparsely populated rural areas than in 
urban centers.    
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To explicitly model the utility of response time for a patient, we need a function that maps 
the response time of an EMS vehicle to a patient, to the probability that the patient survives.  
However, there are many different types of EMS calls and the survival probabilities depend 
on the emergency.  We focus on one type of emergency: out-of-hospital cardiac arrest.  There 
are several reasons for our choice:  

1) Cardiac arrest calls are of the highest priority, and the response time is crucial.  Davis 
(2003b) refers to such calls as the most “saveable” and “the truest measure of 
emergency medical performance.” 

2) Current response time standards were derived from cardiac arrest survival studies 
(Fitch, 2005).  

3) Medical researchers have studied the relation between survival probability and 
response time extensively (see next section). 

4) These calls account for a sizeable portion of high priority EMS calls.  
 
We have access to detailed call data for the Calgary, Alberta, EMS system.  In 2004, Calgary 
EMS responded to 14,152 Priority 1 (or “Delta”) calls.  The leading Priority 1 call category 
was “chest pain – Delta” with 1,865 calls.  The combined categories of “chest pain – Delta,” 
“cardiac arrest – Delta,” and “heart problems – Delta” added up to 2,463 (17.4% of all 
Priority 1 calls). Furthermore, the top ten Priority 1 categories not related to heart problems 
were the following: breathing problems, unconscious, traffic accident, building fire, house 
fire, fall, convulsions and seizures, hemorrhage and lacerations, traumatic injuries, and 
unknown problem (man down).  While these categories are likely to have survival functions 
different from cardiac arrest, it can be safely argued that for each of these categories response 
time is important and the probability of recovery decreases gradually with time.  These ten 
categories, combined with chest pain, cardiac arrest, and heart problems, add up to 11,187 
calls, making up almost 80% of all Priority 1 calls.    
 
In addition, there were a significant number of Priority 2 calls in critical categories, including 
3,961 “chest pain – Charlie” calls, 3,570 calls with breathing problems, 2,278 calls in the 
unconscious category, and 1,395 stroke calls.  While these were classified as Priority 2 calls, 
some may have been Priority 1 calls that were misclassified as Priority 2 calls, and some 
Priority 2 conditions may have deteriorated to Priority 1 during the response period.  The 
number of calls in these four Priority 2 categories alone, where response time is critical, is 
11,204.  Hence, for a considerable number of EMS calls, faster is better and OR models for 
EMS system design should take this into account. 
 
The rest of the paper is organized as follows: § 2 reviews relevant literature on ambulance 
location models and cardiac arrest survival probabilities, § 3 discusses how to model the 
probability of survival, § 4 introduces the maximal survival model and compares it to two 
models from the literature numerically, § 5 builds on the maximal survival model from § 4 
and introduces coverage models with increasing realism and shows how survival functions 
can be incorporated into these more refined models, § 6 provides computational results, and § 
7 offers concluding remarks. 
 

2. Literature Review 
 
The literature on ambulance location is quite rich.  It has been reviewed thoroughly by 
Swersey (1994), Marianov and Revelle (1995), and more recently by Brotcorne et al. (2003) 
and Jia et al (2007).  We limit our discussion of this literature to papers that are most relevant 
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to this paper, namely those that use generalizations of covering models where numbers other 
than 0 or 1 are used to quantify the quality of coverage, as well as approaches to minimize 
average response time.  In this section we also discuss the literature on survival functions for 
EMS, which is central to our paper.   
 
2.1 Generalizations of coverage models 
Brotcorne et al. (2003) provide a recent survey of the EMS location literature, and identify 18 
different models for ambulance location.  All of these models use the concept of coverage. 
Deviations from a 0 or 1 for coverage occur for two reasons: 

1) Incorporating the probability that a station may have no EMS vehicles to respond to a 
call:  If the probability of having an idle EMS vehicle at a given station is p, then the 
expected coverage for a demand point with a demand of one unit within the coverage 
radius is not 1 but p (e.g., Daskin, 1983, Saydam and McKnew, 1985, Revelle and 
Hogan, 1989). 

2) Incorporating response time uncertainty: If the probability of responding from a 
station to a demand point within the given time limit is q, then the expected coverage 
for a demand point within the coverage radius is q (Daskin, 1987). 

In a model that incorporates both EMS vehicle availability and response time uncertainty, the 
expected coverage for a unit demand would be pq, assuming the two sources of uncertainty 
are independent. 
 
While such models are more realistic than the basic coverage model, the deviation from zero 
or one in coverage is due to factors other than the time-dependent utility of the response time.  
All such models still use the covering concept with a fixed (and arbitrary) coverage radius.  
The central assumption is still the same: if the vehicle reaches the demand within a specified 
time limit then the call is covered (the patient is saved) and if not it is not covered (the patient 
is lost).  Hence, while these generalizations of the covering model have different levels of 
sophistication in the way different uncertainties are incorporated, all suffer from the same 
shortcoming in the modeling of the patient’s utility as a function of the response time.  We 
discuss these models in more detail later in the paper. 
 
We are aware of only three papers that take a critical view of the 0-1 coverage concept and 
attempt to generalize it.  Church and Roberts (1983) suggest a piecewise linear step function 
to incorporate quality of service in a covering model. They show that the piecewise linear 
utility function may result in solutions that are significantly different from those obtained 
using the standard max cover model. While this is a step in the right direction, it is ad-hoc 
and rather limited.  More recently, Karasakal and Karasakal (2004) and Berman, Krass, and 
Drezner (2003) independently introduced coverage models where coverage decays gradually 
with distance.  Karasakal and Karasakal (2004) focus on algorithmic issues, and they design a 
Lagrangian heuristic to solve the problem.  In their computational experiments, they assume 
that coverage changes from 1 (full coverage) to 0 (no coverage) in a narrower interval than 
would be appropriate for the context we focus on, where survival probability might decay 
gradually from around 30% to 5% when response time varies from 0 to 10 minutes.  Berman, 
Krass, and Drezner (2003) present a structural result that allows one to limit candidate 
locations in a network to a finite set without loss of generality.  Then, they show how the 
problem can be formulated as an uncapacitated facility location problem and they also 
provide an alternative and more efficient formulation.  Neither of these papers discusses how 
one would quantify a coverage function, which is an issue that we emphasize.  We also 
emphasize estimation of the benefit of using a finer graduation than 0-1 coverage.  While 
Karasakal and Karasakal (2004) report on spatial differences between optimal solutions to 
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their model and corresponding instance of the standard max cover model, they do not address 
differences in the objective function value—the measure of quality of service. 
 
2.2 Average response time minimization 

In a deterministic setting, the p-median model can be used to locate ambulance stations to 
minimize average distance from demand nodes to the closest ambulance station.  Larson’s 
(1974, 1975) exact and approximate hypercube models can be used to estimate average 
response time, taking ambulance unavailability into account.  Jarvis (1975) developed a 
locate-allocate heuristic that assigns ambulances to stations to minimize average response 
time, as evaluated by the approximate hypercube model (see also Larson, 1979). 
 
2.3 Survival functions 
Almost all of the published research we have found relating survival rates to EMS response 
times focuses on cardiac arrest.  One notable exception is Cretin and Willemain (1979), who 
focus on survival rates after myocardial infarction (heart attack). 
 
Eisenberg et al. (1990) reviewed published reports from 29 cities on survival rates after out-
of-hospital cardiac arrest. They identified many factors besides response times that may 
influence survival rates, including system design (how EMS staff are trained; which 
procedures they perform), the consistency with which procedures are applied, physiological 
and demographic differences between regions, and inconsistencies in definitions used for 
terms such as “cardiac arrest” and “response time.” 
 
They present hypothetical survival curves from the time of collapse for five different EMS 
system types: EMS vehicles staffed by emergency medical technicians only (EMT), EMT 
with defibrillation capability (EMT-D), paramedic, EMT followed by paramedic, and EMT-
D followed by paramedic. The hypothetical survival curves assume that without intervention, 
the survival rate begins at 100% at the time of collapse and decays linearly to zero after 10 
minutes. When EMTs arrive and administer cardiopulmonary resuscitation (CPR), the slope 
of the survival curve is assumed to decrease, but remain negative. If EMTs administer 
defibrillation as well, then the slope is assumed to decrease further. The survival curve is 
assumed to stabilize (have a slope of zero) either when paramedics arrive and provide 
medication and intubation, or, for EMS systems with no paramedics, when the patient arrives 
in a hospital. 
 
The authors suggest benchmark survival rates after stabilization ranging from 10% for EMT 
systems to 35% for EMT-D / paramedic systems. The benchmark values are close to values 
that have been achieved in King County, WA, where the EMS system has evolved from 
EMT, to EMT-D, to EMT/Paramedic, to EMT-D/Paramedic over time. 
 
Perhaps the most convincing evidence that short response times improve survival rates of 
cardiac arrest patients comes from a study conducted in casinos (Valenzuela et al, 2000), 
where security officers were trained to administer CPR and defibrillation.  The exact time of 
collapse was determined from security videos and times from collapse to CPR were typically 
under three minutes.  This separates this study from most others, where the time of collapse is 
either subjectively estimated by bystanders or ignored and times from collapse to CPR are 
considerably longer.  In this study, patients who received defibrillation within 3 minutes after 
collapse had a 74% survival rate, while those who received defibrillation later had a 49% 
survival rate. 
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Of the many studies that Eisenberg et al. (1990) surveyed, some did not report response times 
at all, while others reported only averages or percentiles, and a few reported response time 
distributions and estimated how survival depended on response time.  We now discuss four 
relevant studies that estimated such survival functions. 
 
The first study was conducted by Larsen et al. (1993).  The authors used data from the 
cardiac arrest surveillance system of King County (Washington, US).  Using multiple linear 
regression, they estimated the following equation for survival probability: 
 ACLSDefibCPRACLSDefibCPR 021.0011.0023.067.0),,( IIIIIIs −−−=       (1) 

where  
ICPR = the duration from collapse to CPR,  
IDefib = the duration from collapse to defibrillation,  
IACLS = the duration from collapse to Advanced Cardiac Life Support (ACLS), 

and all three durations are measured in minutes.  The authors reported that the interactions 
between the variables were insignificant, and the additive model was accurate.  A comparison 
between the predicted and the observed survival rates revealed that the largest difference was 
observed when response time was very large.  Where the model predicted a survival rate of 
0%, observed survival rates ranged from 3% to 20%, depending on specific attributes of the 
system, e.g., whether the ambulances have defibrillators and are staffed by paramedics. 
 
The second study is by Valenzuela et al. (1997), who used data from Tucson (Arizona, US) 
and King County (Washington, US) and logistic regression to construct a survival function.  
The function included many factors: age, manual CPR applied by bystanders, time interval 
from collapse to CPR, time interval from collapse to defibrillation, and manual CPR initiated 
by bystanders / collapse to CPR interval interaction. Notably, the authors found that the site 
(Tucson or King County) did not have a significant effect on survival after controlling for the 
aforementioned variables, i.e., the same survival function could be used for both urban areas.  
The authors then gave a second survival function which included only the time interval from 
collapse to CPR and the time interval from collapse to defibrillation. This second function, 
which quite accurately approximates their first function, is: 

 ( ) 10.139 0.106 0.260
DefibCPR

DefibCPR1),(
−++−+= II

eIIs       (2) 

In contrast with the previous study, the authors reported that the survival function 
overestimated the probability of survival when the response time was large. 
 
The third study is due to Waaelwijn et al. (2001).  This study used data from Amsterdam, 
Netherlands, and the surrounding region.  Using logistic regression, three different survival 
functions were estimated, from the perspectives of the bystander, the first responder, and the 
paramedic.  Many details were included in the last two functions such as the initially 
diagnosed heart rhythm and the necessity of advanced CPR. The first function had three 
variables: a binary variable to denote whether the collapse was witnessed by EMS staff or 
not, the length of the time interval from collapse to basic CPR, and the length of the time 
interval from basic CPR to the arrival of the EMS vehicle. Their first function is:  

 ( ) 1)0.14(0.37.0 0.04

ResponseCPREMS
CPRResponseCPREMS1),,(

−−+++
+=

IIIX
eIIXs    (3) 

where XEMS is 1 if the cardiac arrest was witnessed by EMS staff and 0 otherwise, and IResponse 
denotes the length of the response time in minutes.  
 
The fourth study was conducted by De Maio et al. (2003), using data from several 
municipalities in Ontario, Canada.  The authors used stepwise logistic regression to estimate 
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survival probability.  The variables that remained in the final model were EMS response 
time, age, whether the collapse was witnessed, whether a bystander administered CPR, and 
whether fire or police administered CPR.  They then used an ad-hoc procedure to average 
over the effects of all of the explanatory variables except response time, resulting in a 
function that predicts survival probability based solely on EMS response time, for people in 
the population they studied: 

 ( ) 1262.0679.0

Response
Response1)(

−+
+=

I
eIs        (4) 

 
In using the four estimated survival functions, it is important to consider how “survival” was 
defined, which cases were included, and the type of EMS system in the study region.  All 
four studies defined “survival” to mean “survival until discharge from hospital.”  Larsen et al. 
(1993) and Valenzuela et al. (1997) limited their study to patients with ventricular fibrillation 
(a type of heart rhythm that is classified as “shockable”) whereas Waaelwijn et al. (2001) and 
De Maio et al. (2003) included all cases that were treated for cardiac arrest by EMS 
personnel, regardless of whether the initial rhythm was shockable.  The former two studies 
were done in regions with a two-tier EMS system, where first responders had EMT training 
and second responders were paramedics.  The latter two studies were for single-tier EMS 
systems staffed by EMTs (De Maio et al., 2003) or personnel trained according to European 
standards (Waalewijn, et al., 2001). 
 
The medical literature we have reviewed assumes, implicitly or explicitly, that EMS systems 
are driven by a coverage standard, such as a target to reach 90% of the highest priority calls 
in 8 minutes.  One study (Blackwell and Kaufman, 2000) reaches the pessimistic conclusion 
that “there is little evidence … to suggest that changing … response time specifications to 
times less than current, but greater than 5 minutes, would have any beneficial effect on 
survival.”  Our contention is that the performance measure (coverage) should be questioned, 
and that if EMS systems are designed to directly maximize the expected number of survivors 
rather than using coverage as a proxy, then improvement is possible. 
 
In the next section we compare the four survival functions introduced in this section, and 
discuss how one might deal with variables other than response time that appear as 
explanatory variables in the survival functions. 
 
 

3. Modeling Probability of Survival 
 
3.1 Modeling the Response Time 
The survival functions that we surveyed differ from each other in many aspects.  Some 
functions include additional explanatory variables besides response time.  For example, (1) 
includes the length of the time intervals from collapse to CPR, defibrillation, and intensive 
care, and (3) requires knowledge of whether EMS staff witnessed the collapse or not.  It is 
beneficial to include such additional explanatory variables because it allows local calibration 
of the functions, taking into account that the community where one wishes to use the location 
model may differ systematically from the community where the data that were used to 
estimate the survival function was collected.  Such calibration involves, on the one hand, 
ensuring that the estimated survival function is based on data from an EMS system that is 
comparable to the one where one wishes to use the location model.  For example, if the EMS 
system uses only emergency medical technicians, then one should not use a survival function 
that is based on an EMS system that uses paramedics.  On the other hand, one should 
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“average over” behavioral explanatory variables such as whether a bystander administers 
CPR, leaving only the response time. 
 
For illustration purposes, consider the following deterministic (and in some cases 
unrealistically optimistic) assumptions that one could use to eliminate all variables except the 
response time: 

• The collapse of the patient is not witnessed by an EMS unit, i.e., XEMS = 0 in (3). 
• A call is placed to EMS as soon as the patient experiences cardiac arrest. 
• CPR is performed by the responding EMS unit immediately upon arrival.  CPR is not 

performed by a bystander.  Together with the preceding assumptions, this implies that 
IResponse = ICPR in (1) – (3). 

• All EMS units are equipped with defibrillators and staff who are trained to use them.  
Defibrillation is performed one minute after arrival, which implies IDefib = IResponse + 1 
in (1) and (2). 

• ACLS is performed at the hospital which takes an average of 16 minutes to reach after 
the first response (i.e., IACLS = IResponse + 16 in (1)).   

 
Considering we used assumptions in favor of the patient (EMS contacted immediately, 
immediate CPR upon arrival, defibrillation within one minute of arrival), Figure 2 clarifies 
two sobering messages about the consequences of a cardiac arrest where immediate response 
is not available and a call to EMS must be made. 

1) All survival functions start well below 100%.  This means a cardiac arrest is quite 
likely to result in death even if the response is almost instantaneous. 

2) All functions show survival probabilities below 10% at 10-minute response times. 
 
Figure 2 also makes it rather clear that the standard maximal covering model with a response 
radius of, say, 9 minutes is not likely to maximize the number of cardiac arrest survivors.  
The survival probability is about five times higher when responding immediately than when 
responding in 9 minutes, but a covering model does not differentiate between these two 
response times.  Furthermore, response times of 9 and 10 minutes result in almost the same 
survival probability, while a covering model attaches a major difference to these two 
response times.  Finally, the survival probability is nonzero for response times over 9 minutes 
while the covering model would place no value on responses over 9 minutes. 
 
3.2 Modeling Explanatory Variables Other than Response Time 

We now turn to incorporating the impact of explanatory variables besides response time.  Let 
( )s d  be the probability of survival as a function of distance d, for a patient at a particular 

location, assuming the responding EMS vehicle comes from a particular station.  We fix the 
location and the responding station to simplify the notation in this section.  The objective 
functions of the location models we present aggregate over demand locations and stations.  
The distance will determine the distribution for the response time R.  The probability of 
survival will also depend on a vector of other explanatory variables, O.  Medical studies 
attempt to quantify the probability of survival as a function s(R(d), O) of response time 
(which we show here as a function of distance) and other explanatory variables.  To obtain 
appropriate input for location models, we need to “average over” both the response time and 
the other explanatory variables, i.e., ( ) E[ ( ( ), )]s d s R d= O . 
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Figure 2: A comparison of the four survival functions discussed, plotted on the background 

of the step function of the standard cover with a 9-minute threshold.  
 
The effort needed to quantify the variation in these other explanatory variables depends on 
the variable.  Some are known system design features, e.g., whether ambulances are staffed 
by paramedics or emergency medical technicians.  Others are measurable but typically not 
tracked, e.g., whether cardiac arrest is witnessed by a bystander and whether the patient 
receives CPR from a bystander.  In the U.S., efforts by the Centers for Disease Control and 
Prevention and the American Heart Association are underway to facilitate the routine 
collection of such data in a cardiac arrest registry (Anonymous, 2006, pg. 66) and a recent 
survey (Williams, 2007) indicates that 25.4% of big-city EMS systems in the U.S. track rates 
of bystander CPR.  Finally, some variables are difficult to measure and rough estimates must 
be used, e.g., for the time from when a patient collapses due to cardiac arrest until a phone 
call is placed to EMS.  It is important to assess the sensitivity of the model to estimates for 
variables in this last category. 
 
Assuming that one has information about the probability distribution for R(d) and for O, one 
could attempt to compute ( )s d  using exact or approximate closed-form relationships, 

numerical integration, or Monte Carlo simulation.  We now elaborate on the Monte Carlo 
approach, because it is general and easy to implement.  First, choose a set of representative 
distances (d1, d2, …, dm).  For each distance, simulate n EMS calls, and let Rij, and Oij be the 
values for the response time and other explanatory variables for the i-th call and the j-th 
distance.  Then, one can use the function s(R(d), O) to compute the probability of survival sij 

for the i-th call and j-th distance.  The sample average 
1

/
n

iji
s n

=∑  provides an estimate for 

( )js d .  The estimates 1 2( ( ), ( ), , ( ))ms d s d s dK  could then be used to approximate the 

survival function, possibly by fitting some parameterized function to them. 
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To illustrate the procedure, we will make the following assumptions, which are roughly 
consistent with data reported by Eisenberg et al (1979) for King County, WA.  We focus on 
cases where cardiac arrest occurs before an EMS vehicle is called.  The first time interval of 
interest is access time T1, the time from when the patient collapses from cardiac arrest until a 
phone call is placed to EMS.  Consistent with Eisenberg et al (1979), we assume that 61% of 
cardiac arrests are witnessed or heard by a bystander, and in those cases access time is 
exponentially distributed with a mean of 1.2 minutes.  In the 39% of cardiac arrests that are 
not witnessed, we assume that access time is exponentially distributed with a mean of 30 
minutes. This is obviously a rough estimate; we discuss the sensitivity of the estimated 
survival curve to it later.  Second, we consider the time T2 from the moment EMS is 
contacted until the patient receives CPR. CPR could be administered by a bystander or by 
EMS staff when they arrive.  We assume that 64% of bystanders will perform CPR on the 
patient, and that the time until they do so, after contacting EMS, is an exponentially 
distributed random variable B with a mean of 1 minute.  Thus, with 36% probability, T2 will 
equal the EMS response time R and with 64% probability it will equal min(R, B).  Third, we 
consider the time from beginning of CPR until the first EMS unit arrives, T3.  Consistent with 
our previous assumptions, T3 will equal zero with 36% probability.  Finally, let T4 be the 
interval from arrival of an EMS unit until defibrillation, which we’ll assume to follow an 
exponential distribution with a mean of 2 minutes.   
 
To simulate the response time R, we assume that it consists of pre-travel delay that is 
independent of distance, and travel time, which depends on the shortest path distance d.  We 
assume the pre-travel delay is lognormally distributed with a mean of 3 minutes and a 
standard deviation of 1.5 minutes (consistent with data from the City of St. Albert, as 
reported in Budge et al., 2007b).  We also assume the travel time (in seconds) to be 
lognormally distributed, with a median and multiplicative standard deviation given as follows 
(based on Budge, 2004). 
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    (6) 

 
For more on the modeling of travel times, see Kolesar et al. (1975), Carson and Batta (1990), 
and Campbell (1992). 
 
We used these assumptions, together with the survival function (2) from Valenzuela et al. 
(2000) to estimate the survival probability as a function of distance, in increments of 500 m.  
This survival function has ICPR = T1 + T2 and IDefib = T1 + T2 + T3 + T4 as explanatory 
variables.  The results are shown in Figure 3.   
 
To illustrate how one could assess the impact of parameter estimates for the explanatory 
variables, consider perhaps the least reliable estimate, that of the mean access time for cardiac 
arrests that are not witnessed.  When we decreased this estimate from 30 to 5 minutes, the 
survival curve shifted up by anywhere from 3.6 percentage points (at a distance of zero) to 
0.2 percentage points (at a distance of 45 km). When we increased the estimate from 30 to 60 
minutes, the survival curve shifted down by 0.7 to 0.02 percentage points.  A more extensive 
sensitivity analysis would determine how much this variation in the survival curve impacts 
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the optimal solution to the models that will follow, and the resulting estimate of the total 
expected number of survivors.   
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Figure 3: Estimated survival probability as a function of distance after averaging over the 

explanatory variables in the Valenzuela et al. (2000) survival function.  The “+” 
signs show 95% confidence intervals around the estimated average survival 
probabilities. 

 
This brief discussion demonstrates that the response time is the most important component of 
the survival functions, and the other parameters are unlikely to impact significantly the 
results of ambulance location studies.  However, as we described above, it is possible to 
conduct a parametric analysis to fully assess the impact of the function parameters on the 
results.  In the next section we introduce the maximal survival location problem and use a 
survival function similar to the one in Figure 3 to illustrate the benefits of incorporating 
survival functions into a standard max cover model.  

 

 

4. The Maximal Survival Location Problem 
 
4.1 Formulation 
The maximal covering location problem (MCLP) and the q-median problem are the most 
basic models that one could use to locate ambulances (see the appendices for formulations).  
MCLP aims to maximize total covered demand with q facilities and the q-median problem 
aims to minimize average distance to the closest of q facilities. 
 
We now formulate the maximal survival location problem (MSLP), where the objective is to 
maximize the expected number of patients who survive.  Let ijp  denote the probability that a 

patient at demand node i survives and is served by an EMS vehicle from station j.  We 
assume that every demand node is served by the closest station.  Then the objective function 
is: 
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where m is the number of demand nodes, n is the number of candidate locations, and di is the 
demand at node i.  In MSLP we need to keep track of which station serves which demand 
point, so we define decision variables yij to equal one if demand node i is served by an EMS 
vehicle at location j, and zero otherwise.  Then 
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where tji is the travel time from candidate location j to demand node i and td is the pre-travel 
delay.  We assume that the travel time and pre-travel delay are deterministic, but we relax 
this assumption later.  Letting q be the number of facilities, and xj be equal to one is candidate 
location j is selected (and zero otherwise), the formulation for the maximal survival problem 
(MSLP) follows: 
 
MSLP: 
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  xj ∈ {0,1}, j = 1, …, n,       (13) 
  ijy ∈ {0,1}, i = 1, …, m, j = 1, …, n.      (14) 

 
4.2 An Empirical Comparison of MSLP to two Models from the Literature 
We now compare the MCLP, the q-median, and the MSLP empirically.  These three simple 
and deterministic models allow us to focus on the impact of replacing zero-one coverage or 
average response time with the survival probability.  For this comparison we use data from 
Edmonton, Canada, with 180 demand points and 16 candidate locations for EMS stations, 
and only the demand for Priority 1 calls.  Using CPLEX 8.11, we solved the MCLP, the q-
median problem, and the MSLP on a Dell PowerEdge workstation with 1.13 Ghz CPU clock 
and 1 GB of RAM, and experienced run times of at most 1 CPU second.  We use a survival 
function based on the same assumptions as in the previous secton (see Figure 3), except that 
uncertainty in response times was ignored, i.e., we used E[ (E[ ( )], )]s R d O  instead of 

E[ ( ( ), )]s R d O . 

 
We solved the models to optimality for q (number of stations) ranging from 1 to 16.  Figure 4 
shows the expected number of survivors (evaluated using the approximate hypercube model) 
for the optimal solution of each model.  The results demonstrate that using the optimal 
solution of the MCLP or the q-median can lead a decision-maker to select locations that are 
far worse than those which maximize the number of survivors.  Using the MCLP solutions, 



 13 

the expected number of survivors is up to 7.7% lower than it could be, and using the q-
median solutions, the expected number of survivors is up to 23.5% lower than it could be.   
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Figure 4: The expected number of survivors for the optimal solutions of MCLP and MSLP 

(top panel) and q-median and MSLP (bottom panel) for 1 through 16 stations. 
 
When used as proxies for MSLP, both the MCLP and q-median have the weakness that when 
the number of stations increases, the expected number of survivors may decrease—see the 
MCLP results in Figure 4 when q increases from 8 to 9.  For MCLP, this can happen when 
the model sees an opportunity to extend coverage to areas where the travel time from the 
closest facility is just below the coverage standard, and the survival probability is low.  For 
the q-median, this can happen when the model sees an opportunity to reduce the longest 
response times at the expense of the shortest response times.  The shortening of the long 
response times may not do anything to increase survivability, while lengthening the short 
response times can decrease survivability considerably. 
 
We note one additional weakness of MCLP: With 13 stations, this model can cover all of the 
demand in the city.  Hence, the solutions of the problems with q > 13 are all identical to the 
solution for q = 13.  In contrast, MSLP (and the q-median, with the exceptions noted in the 
previous paragraph) is able to improve the expected number of survivors each time a new 
station is added.   
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Finally, the objective function value of MSLP is more meaningful than that of MCLP and q-
median and it can be more useful in deciding how many stations an EMS system should have.  
For example, if a decision-maker is undecided between 9 and 10 stations, all one can say 
based on MCLP is that 10 stations will “cover” 23 more calls.  In contrast, based on MSLP 
one can state that the 10th station will save an average of 15 more lives per year in cardiac 
arrest cases. 
 
We conclude that MCLP is a blunt tool for the task on hand.  It lacks the sophistication to 
properly differentiate between different outcomes and oversimplifies the problem by 
classifying the population into two sets (covered and uncovered).  It may be adequate for the 
design of non-emergency service systems where the response time is not critical.  However, 
for EMS systems, MCLP is a poor model and MSLP is superior.  The q-median has a 
different limitation—it sees a response time of 20 minutes as twice as bad as a response time 
of 10 minute, while in terms of survivability, there is little difference. 
 
4.3 Sensitivity of the MSLP Results to the Shape of the Survival Function Used 
We explored the sensitivity of our results to the shape of the survival function by solving 
MSLP with two other survival functions—one with higher survival probabilities and slower 
decay and the other with lower survival probabilities.  Figure 5 shows all three survival 
functions.  Recall that the base case survival function was the one from Figure 3, adjusted for 
the assumption of deterministic response times.  The “high” survival function is the one from 
Figure 3 and the “low” survival function is the one from Figure 3, divided by two. 
 
The solutions to MSLP were identical for the three survival functions, for all values of q.  
This provides us with some empirical evidence that the optimal locations are not sensitive to 
the parameters of the survival function. 
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Figure 5: The survival functions used to compare the MCLP, MSLP, and q-median models. 
 
In this section we have empirically demonstrated significant differences between MCLP, q-
median, and MSLP and hopefully convinced the reader that MSLP is more suitable than 
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MCLP or q-median for EMS station location and that the exact shape of the survival function 
is not very important.  We now present covering models with increased realism, each of 
which can be enhanced further by incorporating a survival function. 
 
 

5. More realistic EMS location models 
In Section 4 we focused on one weakness of MCLP; the lack of discrimination between 
distances that are within (outside) the coverage standard.  There are other shortcomings of 
MCLP which have been addressed in the literature.  MCLP ignores two significant sources of 
uncertainty:   

1) It assumes there is always an EMS vehicle available at a station.  However, in 
practice, EMS vehicles are busy 30% – 70% of the time and stations are regularly 
exposed (i.e., have no EMS vehicles to respond to a call) during the course of a day. 

2) It assumes response times are deterministic.  Yet actual travel times between an origin 
and a destination show lognormal distributions with fairly high coefficients of 
variation (Budge, 2004) and pre-travel delays are highly variable as well (Budge et al, 
2007b). 

The Maximal Expected Covering Location Problem (MEXCLP) and the Maximal Covering 
Location Problem with Probabilistic Response Times (MCLP+PR) have been proposed as 
extensions of MCLP to deal with these two types of uncertainty.  Finally the Maximal 
Expected Covering Location Problem with Probabilistic Response Times (MEXCLP+PR) 
incorporates both types of uncertainty.  The two sources of uncertainty can also be 
incorporated when minimizing average response time.  Jarvis (1975) proposed a locate-

allocate heuristic for this purpose; see also Larson (1979).  This heuristic uses the 
approximate hypercube model to evaluate the average response time.  The heuristic iterates 
between evaluating the average response time and dispatch probabilities (the allocation step) 
and moving ambulances to different stations so as to minimize average response time, 
assuming that the dispatch probabilities do not change (the location step).  Appendix A 
contains formulations for MEXCLP, MCLP+PR, MEXCLP+PR, and a description of Jarvis’s 
locate-allocate heuristic. 
 
In the remainder of this section, we describe how survival functions can be incorporated into 
MEXCLP, MCLP+PR, and MEXCLP+PR models, replacing the maximization of expected 
coverage with maximization of the expected number of surviving patients.  As in MSLP, let 

ijp  denote the survival probability of a patient at demand node i, when served by an EMS 

unit from station j.  In what follows, we describe the computation of ijp  under different 

assumptions about response time variability and ambulance availability. 
 
5.1 The Maximal Expected Survival Location Problem (MEXSLP) 
MEXCLP does not differentiate between locations covering a demand node so long as they 
are within the radius of coverage. However, the use of the survival function necessitates a 
model which recognizes EMS units from different stations. The model for MEXCLP+PR, 
with its definitions of preference orders and the way it handles the busy probabilities, is 
suitable to integrate the survival function with the assumptions of this model.  In this case, 
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where p is the average fraction of time an EMS unit is busy, k(i, j) is the jth preferred station 
for demand node i, and zj is the number of EMS units allocated to station j.  The formulation 
is: 

 
MEXSLP: 
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  zj ∈ {0, 1, …, cj},  j = 1, …, n      (19) 
 

5.2 The Maximal Survival Location Problem with Probabilistic Response Time 

(MSLP+PR) 
For this case, the variable and constraint structure of MSLP is sufficient and the only 
modification required is an updated objective function. We can express pij as 

ijijij yRsEp )]([= , resulting in the following formulation: 

 
MSLP+PR: 
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The coefficients )]([ ijRsE  can be pre-computed for each demand node – station pair (i,j), 

using the methods discussed in Section 3.  Interestingly, the formulation for MSLP+PR is 
structurally identical to that for MSLP, MCLP+PR, and the q-median problem.  The only 
difference between these formulations is the constant that multiplies yij in the inner 
summation of the objective function. 

 
5.3 The Maximal Expected Survival Location Problem with Probabilistic Response 

Time (MEXSLP+PR) 
 
Similar to the previous case, the constraint structure of the original model (MEXCLP+PR) is 
sufficient and we only need to modify the objective function. In accordance with the 
assumptions of this model 
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where ˆ
jp is the average fraction of time an EMS unit at station j is busy.  The resulting model 

is: 
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MEXSLP+PR: 
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As in the previous case, we pre-compute )]([ ijRsE  for each demand node – station pair (i,j). 

 
 

6. Computational results 
 
We used data from the Edmonton EMS system, as in Section 4.  The data are available from 
http://www.bus.ualberta.ca/aingolfsson/data/.  Table 1 compares the size of the different 
optimization models.  The linear models were solved on a Dell PowerEdge workstation with 
1.13 Ghz CPU clock and 1 GB of RAM, using CPLEX 8.11 in under 1 CPU second per 
problem.  The nonlinear models were solved on a PC with 3.0 GHZ CPU clock and 1 GB of 
RAM, using the student version of GAMS 22.0, with runtimes ranging from 10 to 300 CPU 
seconds.  On the same PC the runtimes for the locate-allocate average response time 
minimization heuristic were no more than 5 seconds. 
 
Table 1: Sizes and characteristics of the optimization problems solved (for 180 demand 

nodes and 16 candidate locations). 
 

Problem Binary 

variables 

Integer 

variables. 

Constraints Linear? 

MCLP 196  181 Linear 
MSLP 2,896  197 Linear 
q-median 2,896  197 Linear 
MCLP+PR 2,896  197 Linear 
MSLP+PR 2,896  197 Linear 
MEXCLP 180r 16 181 Linear 
MEXSLP  16 1 Nonlinear 
MEXCLP+PR  16 1 Nonlinear 
MSLP+PR  16 1 Nonlinear 

 
The algorithm of Budge et al. (2007b) to solve MEXCLP+PR is reported to either converge 
to a single solution, or to cycle between two solutions.  In case of cycling, the objective 
function values of each of the two solutions are incorrect since they are computed with 
respect to busy probabilities associated with the other solution.  To overcome this problem, at 
every iteration we computed the “real” objective function value associated with a solution by 
computing the corresponding busy probabilities, and we chose the solution with the higher 
“real” objective function value as the best solution in case of cycling. 
 
When computing the expected number of survivors, we used only the arrival rate of urgent 
calls (about 29% of the total), i.e., we assumed that the probability of survival for all urgent 
calls varies similarly with response time as it does for cardiac arrest calls, while for non-
urgent calls, the probability of death is negligible.  We used the survival function from Figure 
3.  When computing busy probabilities, we used the arrival rate for all types of calls, because 
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all calls contribute to the workload of the EMS units.  The same yardstick is used to compare 
all solutions, i.e., the expected number of survivors as evaluated with the approximate 
hypercube model. 
 
6.1 Comparing Models Incorporating only Randomness in Response Time: MCLP+PR 

vs. MSLP+PR 
 
We begin by considering models that incorporate randomness in response times but assume 
perfect availability, i.e., we compare MCLP+PR to MSLP+PR.  Recall that in Section 4 we 
reported a comparison of MCLP and MSLP and found that the number of survivors resulting 
from ambulance locations generated by MCLP can be up to 7.7% lower than the number of 
survivors resulting from MSLP. When one incorporates random response times into MCLP, 
then the coverage value for a particular demand node, instead of being either zero or one, 
becomes a probability between zero and one.  As Table 2 shows, after this has been done, the 
marginal benefit of incorporating a survival function is smaller than before (as reported in 
Section 4). In 8 of the 16 problems MCLP+PR and MSLP+PR provide the same expected 
number of survivors.  The percent improvement due to the incorporation of the survival 
function can be as high as 5.3%, and it averages 0.9% over the 16 problems.  As shown in 
Figure 6, the incorporation of probabilistic response time results in expected coverage 
decaying gradually with distance in a manner similar to the survival probability and this 
leaves less room for improvement due to the use of a survival function.  Nevertheless, the 
survival function improves the performance of the model in the majority of the test problems. 
 
Table 2: The expected number of survivors for solutions to MCLP+PR and MSLP+PR (i.e., 

the two models that incorporate probabilistic response times) for 1 through 16 EMS 
stations.  The fourth column contains the percent deviation between the entries in 
columns two and three.  

 
q MCLP+PR MSLP+PR % Deviation 

1 481.2 481.2 0.0% 
2 572.0 604.3 5.3% 
3 636.3 659.0 3.5% 
4 686.6 708.8 3.1% 
5 764.3 764.3 0.0% 
6 809.1 809.1 0.0% 
7 821.2 821.2 0.0% 
8 843.8 843.8 0.0% 
9 866.5 878.6 1.4% 
10 901.5 901.4 0.0% 
11 908.0 906.6 -0.1% 
12 913.6 914.0 0.0% 
13 930.1 932.7 0.3% 
14 931.8 934.0 0.2% 
15 944.8 953.4 0.9% 
16 959.0 959.0 0.0% 
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Figure 6:  A comparison of the expected survival probability E[s(R)] using (4) and the 

probability of coverage Pr{R ≤ tc}, as a function of expected response time t ≡ 
E[R].  

 
6.2 Comparing Models Involving Busy Probabilities: MEXCLP vs. MEXSLP, and 

MEXCLP+PR vs. MEXSLP+PR 
 
For the models involving busy probabilities (namely the MEX*** family), we used a two-
dimensional experimental design, the first parameter being r (number of EMS units) and the 
second being p (system-wide average busy probability of EMS units).  We estimate the 

average system-wide busy probability for MEXCLP+PR and MEXSLP+PR as qp /λτ=  

where ∑ =
=

m

i id
1

λ  is the total arrival rate of calls to the system, and τ is the average time that 

an EMS unit is tied up with a call.  We used the same formula in reverse by inserting the 
number of EMS units and the targeted system-wide busy probability, taking the total arrival 
rate of calls as output, and scaling the demand data used for busy probability estimation 
accordingly.  The purpose of including p in the experimental design is to control for the 
overall level of congestion in the system.  This does not mean that we force the busy 
probabilities ˆ

jp  to be the same for all stations—we still allow them to vary, as indicated in 

the formulations for MEXCLP+PR and MEXLSP+PR.  We caution that for these models, our 
solutions may not be optimal since the iterative algorithm is not guaranteed to find an optimal 
solution. 
 
Table 3 summarizes the comparison of MEXCLP with MEXSLP.  The expected number of 
survivors was computed using the approximate hypercube model for the solutions to both 
models.  Table 3 shows the percent improvement in the expected number of survivors 
achieved by MEXSLP over MEXCLP.  The average improvement is 0.6%, the maximum 
improvement is 3.7%, and the maximum degradation is 1.8%.  The MEXSLP solution is 
superior to that of MEXCLP by at least 1% in 32 instances, and the opposite is true in only 4 
instances.  It seems that the improvements are most significant for smaller number of EMS 
vehicles and lower levels of system congestion (the value of p).  This makes sense because it 
is more challenging to locate 9 EMS vehicles in 16 stations than it is to locate 24 EMS 
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vehicles in 16 stations.  With higher congestion, the locations of the vehicles become less 
important.  (To see why, consider the limiting case when the congestion is so high that most 
of the time, only one vehicle is available.  In that case, the closest vehicle to the call will 
usually be busy, and the vehicle that responds will simply be the one that happens to be 
available.)  Based on our experiment, it is fair to say that the survival function improves the 
performance of MEXCLP in most instances. 
 
Table 3: The percent improvement in the expected number of survivors achieved by using 

MEXSLP instead of MEXCLP.  The number of EMS vehicles is varied from 5 to 25 
(with 16 stations), and the busy probability for the EMS vehicles is varied from 0.1 
to 0.6. 

 
 r\p 0.1 0.2 0.3 0.4 0.5 0.6 

5 3.2% 3.2% 1.7% 1.2% 1.9% 1.9% 
6 0.0% 0.0% 0.0% 0.0% 3.1% 1.9% 
7 -0.1% 0.8% 1.6% 2.4% 0.0% 1.5% 
8 0.2% 0.8% 1.1% 1.7% 2.2% 0.4% 
9 3.5% 3.4% 0.9% 3.7% 0.0% 0.0% 
10 0.0% 0.0% 0.0% 3.6% 0.6% 1.4% 
11 2.7% 0.9% 2.7% 2.8% 0.2% 1.6% 
12 2.7% 0.8% 2.5% 2.5% 0.2% 0.2% 
13 2.6% 0.9% 0.0% 0.0% 0.6% 0.0% 
14 3.2% -1.4% -0.7% 0.0% 0.1% -0.4% 
15 0.1% 1.0% 0.7% -1.0% 1.3% -1.0% 
16 -0.8% 0.6% 0.2% 0.0% -1.3% -1.8% 
17 0.9% 0.8% 0.6% -0.3% 0.0% -0.8% 
18 0.7% 0.4% 0.1% 1.1% 1.2% -0.7% 
19 0.0% -0.1% -0.8% -0.1% 1.2% -1.2% 
20 -0.2% -0.9% 0.7% 0.2% 0.6% -0.6% 
21 -0.3% -0.9% 0.4% 0.3% 0.0% 0.2% 
22 -0.4% -0.1% -0.3% -0.5% -0.4% 0.8% 
23 -0.2% 0.0% 0.0% 0.0% 0.0% 0.6% 
24 0.1% 0.2% 0.2% 0.0% -0.3% -0.5% 
25 0.1% 0.2% 0.1% -0.1% -0.4% -0.5% 

 
 
Table 4 summarizes the comparison of MEXCLP+PR with MEXSLP+PR.  These results are 
mixed.  The expected number of survivors is the same in 51 cases (40%), higher with 
MEXSLP+PR in 43 cases (34%), and higher with MEXCLP+PR in 32 cases (25%).  Overall, 
the two models appear to perform about equally well.  MEXSLP+PR appears to find 
solutions that perform a little better when congestion is low and MEXCLP+PR appears to 
find solutions that perform a little better when congestion is high.  Our earlier observation 
(when discussing the results in Table 2) that once the probabilistic response times are 
included in the models the survival function makes less of a difference is probably relevant 
here as well.  Note that Table 4 summarizes the results for the most refined pair of models 
which include probabilistic response times as well as busy probabilities.  MEXCLP+PR is a 
sophisticated model and the inclusion of the survival function does not add much to the 
performance of its solutions.   
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Table 4: The percent improvement in the expected number of survivors achieved by using 
MEXSLP+PR instead of MEXCLP+PR.  The number of EMS vehicles is varied 
from 5 to 25 (with 16 stations), and the busy probability for the EMS vehicles is 
varied from 0.1 to 0.6. 

 
 r\p 0.1 0.2 0.3 0.4 0.5 0.6 

5 0.0% 0.0% -0.2% 0.9% 1.2% 0.6% 
6 0.0% 0.0% 0.0% -0.5% 0.6% 0.0% 
7 0.0% 0.9% 0.8% 1.8% -1.1% 0.0% 
8 0.2% 0.3% 0.0% 0.4% 0.1% -0.9% 
9 0.0% 0.0% 0.0% 0.2% 0.0% -0.7% 
10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
11 0.3% 0.0% 0.0% -0.5% 0.0% -1.0% 
12 0.3% 0.2% 0.0% 0.2% 0.0% 0.0% 
13 0.6% 0.2% 0.0% -0.1% -0.8% -0.7% 
14 0.5% 0.7% 0.0% 0.0% 0.0% 0.0% 
15 1.1% 1.4% -0.2% -0.7% 0.0% -0.7% 
16 0.4% 0.8% 0.9% 0.0% -1.3% -1.8% 
17 0.0% 0.1% -0.2% -1.2% 0.0% -1.3% 
18 0.0% 0.0% 0.0% 0.8% 0.0% -1.1% 
19 0.0% 0.0% 0.0% 0.0% -0.5% -0.6% 
20 0.1% 0.1% 0.1% 0.2% -0.5% -0.6% 
21 0.1% 0.2% 0.0% 0.0% -0.5% -0.5% 
22 0.0% 0.0% 0.0% 0.0% -0.4% 0.6% 
23 0.0% 0.0% 0.0% 0.0% -0.3% 0.5% 
24 0.0% 0.0% 0.0% 0.0% -0.6% 0.0% 
25 0.0% 0.0% 0.0% 0.0% -0.4% 0.0% 

 
 
6.3 Comparing MEXSLP+PR with Solutions from the Jarvis (1975) Heuristic 

 
Table 5 compares MEXSLP+PR solutions to those obtained with Jarvis’s (1975) average 
response time minimization heuristic.  Somewhat surprisingly, this heuristic produces 
solutions that perform quite poorly with respect to the expected number of survivors.  
MEXSLP+PR improves these solutions by 6.5% on average (and by as much as 21.6%).  The 
differences are higher when the number of vehicles is smaller and (surprisingly) when the 
system congestion is higher.  These results may indicate either that average response time is a 
poor proxy for the expected number of survivors, or that Jarvis’s heuristic fails to globally 
minimize the average response time. 
 
 
6.4 Comparing All Models 

 
As a final comparison of the ten optimization models presented, we fixed the number of EMS 
vehicles r at 6 and the average busy probability p at 0.3, solved all ten models, and then used 
the approximate hypercube model to evaluate the expected number of survivors for each of 
the ten solutions.  The results are shown in Table 6.   
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Table 5: The percent improvement in the expected number of survivors when using 
MEXSLP+PR compared to minimizing average response time using Jarvis’s 
heuristic.  The number of EMS vehicles is varied from 5 to 25 (with 16 stations), 
and the busy probability for the EMS vehicles is varied from 0.1 to 0.6. 

 
 r\p 0.1 0.2 0.3 0.4 0.5 0.6 

5 21.6% 16.3% 4.4% 5.4% 5.1% 7.2% 
6 9.8% 12.0% 7.9% 12.2% 6.1% 7.0% 
7 11.3% 13.9% 16.1% 10.8% 9.3% 13.2% 
8 8.8% 10.2% 12.7% 15.7% 9.6% 12.0% 
9 9.9% 12.0% 13.8% 13.5% 11.6% 8.2% 
10 8.8% 10.1% 13.1% 8.4% 13.0% 12.9% 
11 6.7% 8.5% 10.2% 11.6% 14.9% 14.9% 
12 6.3% 7.5% 8.8% 11.0% 13.4% 8.5% 
13 1.6% 3.0% 4.6% 6.7% 8.4% 12.4% 
14 1.6% 3.2% 4.8% 6.9% 8.5% 10.3% 
15 1.5% 3.0% 4.8% 6.3% 8.4% 7.9% 
16 1.3% 2.4% 4.4% 5.8% 6.9% 8.3% 
17 0.0% 0.0% 1.4% 2.2% 4.6% 5.4% 
18 2.2% 3.9% 4.7% 5.5% 7.4% 8.2% 
19 2.5% 4.4% 5.4% 5.2% 7.2% 8.1% 
20 2.4% 4.0% 4.8% 5.1% 5.8% 7.3% 
21 2.4% 4.0% 4.8% 5.1% 4.7% 6.9% 
22 0.5% 1.5% 2.3% 2.6% 2.3% 4.4% 
23 0.4% 1.2% 1.7% 1.8% 1.9% 3.9% 
24 0.0% 0.0% 0.0% 0.0% 0.0% 1.4% 
25 0.6% 1.4% 1.6% 1.6% 1.5% 1.9% 

 
 
Table 6: The comparison of the output of all 10 models, solved for r = 6, p = 0.3, and using 

the approximate hypercube to evaluate the expected number of survivors. 
 

 Incorporation of uncertainty 
Type of model None Response times Server availability Both 

Avg. response time 697.3   745.0 
Coverage 761.6 809.1 809.1 809.1 
Survival 809.1 809.1 809.1 809.1 

 
The results summarized in Table 6 are quite striking.  We see that if average response time is 
used as a proxy for expected number of survivors (by solving the q-median problem), then 
the inclusion of response time uncertainty and server availability (using the Jarvis (1975) 
heuristic) improves the number of survivors, but it still falls far short of the best possible.  In 
contrast, if expected coverage is used as a proxy, then the inclusion of either response time 
uncertainty or server availability in the model brings the expected number of survivors up to 
its best known value.  More importantly, just changing the objective function to expected 
number of survivors achieves all of the benefits, even without incorporating the two elements 
of uncertainty in the model. 
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7. Concluding remarks 
 
This paper points to a weakness of covering models for locating emergency vehicles.  We 
discuss research from the medical literature that allows for accurate modeling of 
consequences of different response times for cardiac arrest patients.  We then show how a 
survival function that maps response time to survival probability can be incorporated into the 
deterministic maximum covering model so that the objective becomes one of maximizing the 
expected number of survivors.  We proceed to modify three more sophisticated covering 
models by including the survival function in each.  The incorporation of the survival function 
does not complicate the optimization problems much. 
 
We highlight several weaknesses of the deterministic maximum covering model, including its 
inability to recommend additional beneficial facilities once the whole region has been 
covered and its use of the abstract concept of coverage.  Our computational experiment 
indicates that incorporating survival functions can result in EMS unit locations that save more 
lives.  The standard covering approach is a blunt tool for emergency facility location and it 
should be used with great caution.  In terms of computational effort, optimization models that 
maximize expected number of survivors are only slightly less tractable than covering models.  
In terms of data requirements, survival models are more data-intensive, but some EMS 
agencies are already collecting the necessary information.  We have illustrated how this data 
can be incorporated in the optimization models. 
 
One obvious shortcoming of our approach is that we only have survival functions for one 
type of emergency call.  The commonly used standard of responding to 90% of all high 
priority calls within 9 minutes shares this shortcoming, because it is also a cardiac arrest-
driven standard (Eisenberg, 1979).  The EMS world seems to be paying considerable 
attention to cardiac arrests given their relative frequency and their possible consequences.  
However, EMS practitioners and medical researchers recognize that quantifying the impact 
of response time for other call types is important (Pons and Markovchick, 2002). If future 
research leads to quantifiable survival functions for other call types, then they can be 
incorporated in the models we have presented, by combining survival functions for different 
call types using weights corresponding to the frequency of different call types. 
 
In addition to the deployment of ambulances, the framework we have used also permits study 
of broader policy issues, such as the impact of actions to increase rates of bystander CPR.  
We hope that this paper will help encourage further research on survival functions and other 
more direct and realistic models of EMS operations. 



 24 

References 

Anonymous (2006). Emergency Medical Services: At the Crossroads.  National Academies 
Press, Washington, DC. 

Berman, O., D. Krass, Z. Drezner (2003). The gradual covering decay location problem on a 
network.  European Journal of Operational Research, 151, 474-480. 

Blackwell, T. H., J. S. Kaufman (2002). Response time effectiveness: comparison of response 
time and survival in an urban emergency medical services system.  Academic 

Emergency Medicine, 9(4), 288-295. 

Brotcorne, L., G. Laporte, F. Semet (2003). Ambulance location and relocation models.  
European Journal of Operational Research, 147, 451-463. 

Budge, S. (2004). Emergency Medical Service Systems: Modelling Uncertainty in Response 
Time.  Ph.D. thesis, University of Alberta. 

Budge, S., A. Ingolfsson, E. Erkut (2007a). Approximating vehicle dispatch probabilities for 
emergency service systems with location-specific service times and multiple units per 
location. Operations Research, forthcoming. 

Budge, S., A. Ingolfsson, E. Erkut (2007b).  Optimal ambulance location with random delays 
and travel times. Working paper, available from 
http://www.business.ualberta.ca/aingolfsson/publications.htm. 

Campbell, J. F. (1992). Selecting routes to minimize urban travel time. Transportation 

Research B, 26B(4), 261-274. 

Carson, Y. L., R. Batta (1990). Locating an ambulance on the Amherst campus of the State 
University of New York at Buffalo. Interfaces 20(5), 43-49. 

Chaiken, J., R. C. Larson (1972). Methods for allocating urban emergency units: a survey. 
Management Science 19(4),110-132. 

Church, R., C. ReVelle (1974). The maximal covering location problem. Papers of the 

Regional Science Association, 32, 101-120. 

Church, R. L., Roberts, K.L (1983). Generalized coverage models and public facility 
location. Papers of the Regional Science Association, 53, 117-135. 

Cretin, S., T. R. Willemain (1979). A model of preshospital death from ventricular fibrillation 
following myocardial infarction. Health Services Research, 14(3), 221-234. 

Daskin, M.S. (1983). A maximum expected covering location model: formulation, properties, 
and heuristic solution. Transportation Science, 17, 48-70. 

Daskin, M.S. (1987) Location, dispatching, and routing model for emergency services with 
stochastic travel times. In Spatial Analysis and Location Allocation Models, A. Ghosh 
and G. Rushton (eds.). Van Nostrand Reinhold Company, New York. 

Davis, R. (2003a). Many lives are lost across USA because emergency services fail; turf 
wards between ambulance, fire crews cause deadly delays. USA Today, 28 July 2003, 
pp. A-01. 

Davis, R. (2003b). Special report: sluggish responses to emergencies let patients die; precise 
measures of EMS response times can save lives. USA Today, 29 July 2003, pp. A-01. 

De Maio, V.J., I.G. Stiell, G.A. Wells, D.W. Spaite (2003). Optimal defibrillation for 
maximum out-of-hospital cardiac arrest survival rates. Annals of Emergency 

Medicine, 42(2), 242-250.  



 25 

Eisenberg, M.S., L. Bergner, A. Hallstrom (1979). Cardiac resuscitation in the community: 
importance of rapid provisioning and implications for program planning.  Journal of 

the American Medical Association, 241(18): 1905-1907. 

Eisenberg, M.S., B.T. Horwood, R.O. Cummins, R. Reynolds-Haertle, T.R. Hearne (1990). 
Cardiac arrest and resuscitation: a tale of 29 cities.  Annals of Emergency Medicine, 
19(2): 179-186. 

Felder, S., H. Brinkmann (2002). Spatial allocation of emergency medical services: 
minimizing the death rate of providing equal access?  Regional Science and Urban 

Economics, 32, 27–45. 

Fitch, J (2005).  Response times: myths, measurement and management.  Journal of 

Emergency Medical Services, 30(9), 46–56. 

Jarvis, J. (1975). Optimization in Stochastic Service Systems with Distinguishable Servers.  
Ph.D. thesis, Massachsuetts Institute of Technology. 

Jia, H., F. Ordonez, M. Dessouky (2007). A modeling framework for facility location of 
medical service for large-scale emergencies. IIE Transactions, 39(1), 41-55. 

Karasakal, E.K., O. Karasakal (2004). A maximal covering location model in the presence of 
partial coverage. Computers and Operations Research, 31(9), 1515–1526. 

Kolesar, P., W. Walker, J. Hausner (1975). Determining the relation between fire engine 
travel times and travel distances in New York City.  Operations Research, 23(4), 614-
627 

Larsen, M.P., M.S. Eisenberg, R.O. Cummins, A.P. Hallstrom (1993). Predicting survival 
from out-of-hospital cardiac-arrest—a graphic model. Annals of Emergency Medicine. 
22(11), 1652-1658. 

Larson, R.C. (1974). A hypercube queueing model for facility location and redistricting in 
urban emergency services. Computers and Operations Research, 1, 67-95. 

Larson, R.C. (1975) Approximating the performance of urban emergency service systems. 
Operations Research, 23, 845-868. 

Larson, R. C. (1979). Structural system models for locational decisions: an example using the 
hypercube queueing model. Operational Research '78, Proceedings of the Eighth 
IFORS International Conference on Operations Research, K. B. Haley (ed), North-
Holland Publishing Co., Amsterdam, Holland. 

Marianov, V., ReVelle C. (1995). Siting emergency services. in Facility Location: A Survey 

of Applications and Methods, Drezner, Z., ed. Springer Series in Operations Research, 
199-222. 

Moeller, B. J. 2004.  Obstacles to measuring emergency medical services performance.  EMS 

Management Journal 1(2): 8 – 15. 

Pedersen, R. (2002). Insurance hikes loom as response times lag.  Edmonton Journal, June 
28, B1. 

Pons, P.T., V. J. Markovchick (2002).  Eight minutes or less: does the ambulance response 
time guideline impact trauma patient outcome?  The Journal of Emergency Medicine 
23, 43-48. 

ReVelle, C.S., Hogan, K. (1989). The maximum availability location problem. 
Transportation Science 23, 192–200. 

Saydam, C., M. McKnew (1985). A separable programming approach to expected coverage: 
an application to ambulance location. Decision Sciences, 16, 381-398. 



 26 

Swersey, A.J. (1994). The deployment of police, fire, and emergency medical units. In 
Handbooks in Operations Research and Management Science, Vol. 6: Operations 

Research and the Public Sector, Barnett, A., S.M. Pollock, and M.H. Rothkopf (eds.). 
North-Holland. 

Toregas, C., C. ReVelle, L. Bergman (1971). The location of emergency service facilities. 
Operations Research, 19:1363-1373. 

Valenzuela, T.D., D.J. Roe, S. Cretin, D.W. Spaite, M.P. Larsen (1997). Estimating 
effectiveness of cardiac arrest intervention–A logistic regression survival model. 
Circulation, 96(10), 3308-3313. 

Valenzuela, T.D., D. J. Roe, G. Nichol, L. L. Clark, D. W. Spaite, R. G. Hardman (2000). 
Outcomes of rapid defibrillation by security officers after cardiac arrest in casions.  
The New England Journal of Medicine, 343(17), 1206-1209. 

Waaelwijn, R.A., R. de Vos, J.G.P. Tijssen, R.W. Koster (2001). Survival models for out-of-
hospital cardiopulmonary resuscitation from the perspectives of the bystander, the 
first responder, and the paramedic. Resuscitation, 51(2), 113-122. 

Willemain, T.R. (1975). The Status of Performance Measures for Emergency Medical 
Services.  Journal of the American College of Emergency Physicians, 4, 143-151. 

Williams, D. M. (2007).  2006 JEMS 200-City Survey: EMS from all angles.  Journal of 

Emergency Medical Services, 32(2), 38-54. 

 

 

 

Appendix A: Maximum Coverage Formulations 

 
Define m : the number of demand nodes, 
 n :the number of candidate locations, 
 q :the maximum number of stations, 
 di :the demand of node i, 
 tc :the coverage radius of a station in time units, 
 tji :the travel time from candidate location j to demand node i, 
 td: the pre-travel delay, 
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The Maximum Coverage Location Problem (MCLP): 
 MCLP:  
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  xj ∈ {0,1}, j = 1, …, n      (A4) 
  yi ∈ {0,1}, i = 1,…,m       (A5) 

 
The objective function (A1) maximizes total demand covered.  Constraints (A2) state that 
demand node i can only be covered if at least one candidate location that covers i is selected.  
Constraint (A3) limits the number of facilities to q.  In this model, each station houses one 
EMS vehicle. 

 
The Maximal Expected Covering Location Problem (MEXCLP) 
 
There are two formulations for the MEXCLP in the literature.  The first formulation by 
Daskin (1983) is an integer program and the second is a non-linear integer program by 
Saydam and McKnew (1985).  Both models account for the probability that an EMS unit may 
be busy.  We provide only the linear model for the sake of brevity. 
 
Let   r denote the maximum number of EMS units, 
  p denote the average fraction of time an EMS unit is busy,  
  cj be the maximum number of EMS units that can be stationed at candidate  
  location j,   
  zj be the number of EMS units allocated to station j, and 
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The linear programming model for the MEXCLP follows:  
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  ikŷ  ∈ {0,1}, i = 1,…, m; k = 1,…, r     (A9) 

  zj ∈ {0,1,…,cj}, j = 1,…, n      (A10) 
 
The inner summation of objective function (A6) calculates the probability that there will be 
an EMS unit available to service demand node i.  Therefore, objective function (A6) 
maximizes the expected coverage of demand nodes.  Constraints (A7) state that the actual 
number of EMS units covering node i (LHS of constraint) cannot exceed the total number of 
EMS units that can cover node i (RHS). Constraint (A8) limits the total number of EMS units 
to be allocated to all open candidate locations. 
 
 
 



 28 

The Maximal Covering Location Problem with Probabilistic Response Time 

(MCLP+PR) 
 
Let yij equal 1 if demand node i is closest to candidate location j and let Pij be the probability 
that an ambulance at station j can reach demand node i within the coverage time standard. 
 
Daskin (1987) provides the following formulation for the Maximal Covering Location 
Problem with Probabilistic Response Time: 
 
MCLP+PR:  
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Objective function (A11) maximizes the total demand covered account for the coverage 
probabilities.  Constraints (A12) and (A13) ensure that a demand node is assigned to only one 
EMS facility.  Constraint (A14) requires that at most q candidate locations be chosen.  As in 
MCLP, each candidate location houses at most one vehicle.  We note that the MSLP 
formulation is structurally identical to the MCLP+PR formulation, with s(tji + td) in MSLP 
replacing Pij in MCLP+PR (i.e. {(10) – (14)} = {(A12) – (A16)}). 
 
The Maximal Expected Covering Location Problem with Probabilistic Response Time 

(MEXCLP+PR) 
 
Let k(i, j) denote the j

th  preferred station for demand node i, and jp̂  denote the average 

fraction of time an EMS unit at station j is busy.   
 
Budge et al. (2007b) formulate the Maximal Expected Covering Location Problem with 
Probabilistic Response Time as follows: 
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Objective function (A17) maximizes the total expected demand covered accounting for the 
coverage probabilities Pi,k(i,j).  Constraint (A18) ensures that at most r EMS units are assigned 
to open candidate locations, with at most cj units in location j.  
 
The authors propose the following iterative heuristic: 
1) Initialize the vector 1p̂  of busy probabilities to an estimated system-wide busy probability 

( jpp j ∀= ,ˆ1 ). 

2) Solve MEXCLP+PR for 1p̂ , and record the solution as *z . 

3) Compute a new vector of busy probabilities, 2p̂ , based on *z . 

4) If some convergence criterion is satisfied, stop. Else, replace 1p̂  with 2p̂  and go to Step 
2. 

 
To compute the busy probabilities, the authors generalize (Budge at al, 2007a) and employ an 
approximation scheme based on the well known hypercube queuing model of Larson (1974, 
1975).  A detail about the busy probabilities requires attention: The busy probability 
associated with an EMS station with no allocated EMS units is 1 (and not 0). 

 

Appendix B: Minimizing Average Response Time 

 
The q-Median Problem 

 
The q-median problem is structurally identical to the MCLP+PR formulation.  Using the 
notation for that formulation, the q-median problem can be formulated as: 
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When incorporating ambulance unavailability, we use a locate-allocate heuristic developed 
by Jarvis (1975) and further discussed by Larson (1979) to minimize average response time.  
As described by Jarvis and Larson, the heuristic uses the exact hypercube model to evaluate 
the average response time.  The exact hypercube model is computationally expensive but has 
the advantage of permitting multiple vehicles per station.  The approximate hypercube model 
developed by Larson (1974) assumes a single vehicle at each station.  We used a version of 
the approximate hypercube model that allows multiple vehicles per station (see Budget et al, 
2007b).  As presented by Jarvis and Larson, the heuristic can be described as follows: 
 
Initialization: Find an initial solution. 
 
Allocation step: Evaluate the current solution using the hypercube model.  This includes 

computing f(i, j), the fraction of all demand that comes from node j and is served by 
vehicle i, or in other words, the fraction of patients that come from node j and are 
allocated to vehicle i. 

 
Location step: For each vehicle, pretend that it is possible to move it to any station without 

changing the f(i, j)'s.  Move the vehicle to the station that minimizes the average response 
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time to calls that that vehicle responds to. Note that in this step, multiple vehicles could 
be moved to the same station. 

 
Convergence check: if the new solution equals the previous solution, stop, otherwise return 

to the allocation step. 

 
Jarvis and Larson do not specify how to generate an initial solution.  We used the following 
approach to allocate r vehicles to q stations.  First, we solve an r-median problem.  If r > q, 
then the solution will simply be to place one vehicle at each station.  In this case, we reduce 
each station’s capacity by one, and reduce the number of vehicles to be allocated by to r – q.  
Then we solve an r – q median problem to allocate the remaining ambulances.  If any 
ambulances remain, then we repeat the procedure, until all ambulances have been allocated. 
 
We note the following property of the heuristic.  Suppose that at some point in the execution 
of the heuristic, the current solution has more than one vehicle at a particular station.  In the 
location step, all of these vehicles will be seen as having the same f(i, j)'s, and therefore, they 
will either remain at the current station or they will all be moved together to another station.  
As a consequence, the maximum number of vehicles at a station will never decrease during 
the algorithm.  Possibly as a result of this property, we found that the heuristic almost always 
cycled, sometimes between 5 solutions.  To reduce the impact of such cycling, we used at 
least 50 iterations when the heuristic did not converge.  Furthermore, we kept track of the 
solution with the lowest average response time throughout the algorithm, and reported this 
solution at the end, even when the heuristic converged to a different solution. 
 


