12,589 research outputs found
Targeted photodynamic therapy of breast cancer cells using antibody–phthalocyanine–gold nanoparticle conjugates
A Sr-Rich Star on the Main Sequence of Omega Centauri
Abundance ratios relative to iron for carbon, nitrogen, strontium and barium
are presented for a metal-rich main sequence star ([Fe/H]=--0.74) in the
globular cluster omega Centauri. This star, designated 2015448, shows depleted
carbon and solar nitrogen, but more interestingly, shows an enhanced abundance
ratio of strontium [Sr/Fe] ~ 1.6 dex, while the barium abundance ratio is
[Ba/Fe]<0.6 dex. At this metallicity one usually sees strontium and barium
abundance ratios that are roughly equal. Possible formation scenarios of this
peculiar object are considered.Comment: 13 pages, 3 figures. Accepted to ApJ
Nonlinear hybrid-mode resonant forced oscillations of sagged inclined cables at avoidances
We investigate non-linear forced oscillations of sagged inclined cables under planar 1:1 internal resonance at avoidance. To account for frequency avoidance phenomena and associated hybrid modes actually distinguishing inclined cables from horizontal cables, asymmetric inclined static configurations are considered. Emphasis is placed on highlighting nearly tuned 1:1 resonant interactions involving coupled hybrid modes. The inclined cable is subjected to a uniformly distributed vertical harmonic excitation at primary resonance of a high-frequency mode. Approximate non-linear partial-differential equations of motion, capturing overall displacement coupling and dynamic extensibility effect, are analytically solved based on a multi-mode discretization and a second-order multiple scales approach. Bifurcation analyses of both equilibrium and dynamic solutions are carried out via a continuation technique, highlighting the influence of system parameters on internally resonant forced dynamics of avoidance cables. Direct numerical integrations of modulation equations are also performed to validate the continuation prediction and characterize non-linear coupled dynamics in post-bifurcation states. Depending on the elasto-geometric (cable sag and inclination) and control parameters, and on assigned initial conditions, the hybrid modal interactions undergo several kinds of bifurcations and non-linear phenomena, along with meaningful transition from periodic to quasi-periodic and chaotic responses. Moreover, corresponding spatio-temporal distributions of cable non-linear dynamic displacement and tension are manifested
What do commencing undergraduate students expect from first year university?
The expectations of students entering their first year of undergraduate study in South Australia were investigated. Responses from 3,091 students allowed a comprehensive understanding of students’ expectations. Most respondents (70%) were entering university directly from secondary school and most (78%) were studying in their program of first choice. The major factor in program choice was interest in the topic, followed by career prospects. The need to understand the expectations of students commencing university is becoming even more important with many universities aiming to increase participation from previously under-represented groups. Only 30% of students had realistic expectations about the amount of study required to succeed at university. Most students felt that feedback on submitted work, and on drafts of work, would be important for their learning. Having easy and convenient access to teaching staff outside of face-to-face teaching was seen as an important factor in success. Ninety-one percent of students felt that having friends studying at the same university would provide support, but 25% did not know anyone studying at the same university
Are chimpanzees really so poor at understanding imperative pointing? Some new data and an alternative view of canine and ape social cognition
There is considerable interest in comparative research on different species’ abilities to respond to human communicative cues such as gaze and pointing. It has been reported that some canines perform significantly better than monkeys and apes on tasks requiring the comprehension of either declarative or imperative pointing and these differences have been attributed to domestication in dogs.  Here we tested a sample of chimpanzees on a task requiring comprehension of an imperative request and show that, though there are considerable individual differences, the performance by the apes rival those reported in pet dogs. We suggest that small differences in methodology can have a pronounced influence on performance on these types of tasks. We further suggest that basic differences in subject sampling, subject recruitment and rearing experiences have resulted in a skewed representation of canine abilities compared to those of monkeys and apes
Cluster J Mycobacteriophages: Intron Splicing in Capsid and Tail Genes
Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution. © 2013 Pope et al
Recommended from our members
Machine learning approach for computing optical properties of a photonic crystal fiber
Photonic crystal fibers (PCFs) are the specialized optical waveguides that led to many interesting applications ranging from nonlinear optical signal processing to high-power fiber amplifiers. In this paper, machine learning techniques are used to compute various optical properties including effective index, effective mode area, dispersion and confinement loss for a solid-core PCF. These machine learning algorithms based on artificial neural networks are able to make accurate predictions of above-mentioned optical properties for usual parameter space of wavelength ranging from 0.5-1.8 µm, pitch from 0.8-2.0 µm, diameter by pitch from 0.6-0.9 and number of rings as 4 or 5 in a silica solid-core PCF. We demonstrate the use of simple and fast-training feed-forward artificial neural networks that predicts the output for unknown device parameters faster than conventional numerical simulation techniques. Computation runtimes required with neural networks (for training and testing) and Lumerical MODE solutions are also compared
- …
