1,203 research outputs found
Constraining the Lyα escape fraction with far-infrared observations of Lyα emitters
We study the far-infrared properties of 498 Lyα emitters (LAEs) at z = 2.8, 3.1, and 4.5 in the Extended Chandra Deep Field-South, using 250, 350, and 500μm data from the Herschel Multi-tiered Extragalactic Survey and 870μm data from the LABOCA ECDFS Submillimeter Survey. None of the 126, 280, or 92 LAEs at z = 2.8, 3.1, and 4.5, respectively, are individually detected in the far-infrared data. We use stacking to probe the average emission to deeper flux limits, reaching 1σ depths of ∼0.1 to 0.4 mJy. The LAEs are also undetected at ?3σ in the stacks, although a 2.5σ signal is observed at 870μm for the z = 2.8 sources. We consider a wide range of far-infrared spectral energy distributions (SEDs), including an M82 and an Sd galaxy template, to determine upper limits on the far-infrared luminosities and far-infrared-derived star formation rates of the LAEs. These star formation rates are then combined with those inferred from the Lyα and UV emission to determine lower limits on the LAEs’ Lyα escape fraction (f esc (Lyα)). For the Sd SED template, the inferred LAEs f esc (Lyα) are ?30% (1σ) at z = 2.8, 3.1, and 4.5, which are all significantly higher than the global f esc (Lyα) at these redshifts. Thus, if the LAEs f esc (Lyα) follows the global evolution, then they have warmer far-infrared SEDs than the Sd galaxy template. The average and M82 SEDs produce lower limits on the LAE f esc (Lyα) of ∼10%–20% (1σ), all of which are slightly higher than the global evolution of f esc (Lyα), but consistent with it at the 2σ–3σ level
An Analysis of ALMA Deep Fields and the Perceived Dearth of High-z Galaxies
Deep, pencil-beam surveys from ALMA at 1.1-1.3mm have uncovered an apparent
absence of high-redshift dusty galaxies, with existing redshift distributions
peaking around . This has led to a perceived dearth of dusty
systems at , and the conclusion, according to some models, that the early
Universe was relatively dust-poor. In this paper, we extend the backward
evolution galaxy model described by Casey et al. (2018) to the ALMA regime (in
depth and area) and determine that the measured number counts and redshift
distributions from ALMA deep field surveys are fully consistent with
constraints of the infrared luminosity function (IRLF) at determined by
single-dish submillimeter and millimeter surveys conducted on much larger
angular scales (deg). We find that measured 1.1-1.3mm number
counts are most constraining for the measurement of the faint-end slope of the
IRLF at . Recent
studies have suggested that UV-selected galaxies at may be particularly
dust-poor, but we find their millimeter-wave emission cannot rule out
consistency with the Calzetti dust attenuation law even by assuming relatively
typical, cold-dust (K) SEDs. Our models suggest that
the design of ALMA deep fields requires substantial revision to constrain the
prevalence of early Universe obscured starbursts. The most promising
avenue for detection and characterization of such early dusty galaxies will
come from future ALMA 2mm blank field surveys covering a few hundred
arcmin and the combination of existing and future dual-purpose 3mm
datasets.Comment: 21 pages, 12 figures, accepted for publication in Ap
A low-voltage activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro
Intracellular recordings were obtained from rat neocortical neurons in vitro. The current-voltage-relationship of the neuronal membrane was investigated using current- and single-electrode-voltage-clamp techniques. Within the potential range up to 25 mV positive to the resting membrane potential (RMP: –75 to –80 mV) the steady state slope resistance increased with depolarization (i.e. steady state inward rectification in depolarizing direction). Replacement of extracellular NaCl with an equimolar amount of choline chloride resulted in the conversion of the steady state inward rectification to an outward rectification, suggesting the presence of a voltage-dependent, persistent sodium current which generated the steady state inward rectification of these neurons. Intracellularly injected outward current pulses with just subthreshold intensities elicited a transient depolarizing potential which invariably triggered the first action potential upon an increase in current strength. Single-electrode-voltage-clamp measurements reveled that this depolarizing potential was produced by a transient calcium current activated at membrane potentials 15–20 mV positive to the RMP and that this current was responsible for the time-dependent increase in the magnitude of the inward rectification in depolarizing direction in rat neocortical neurons. It may be that, together with the persistent sodium current, this calcium current regulates the excitability of these neurons via the adjustment of the action potential threshold
A massive, quiescent galaxy at redshift of z=3.717
In the early Universe finding massive galaxies that have stopped forming
stars present an observational challenge as their rest-frame ultraviolet
emission is negligible and they can only be reliably identified by extremely
deep near-infrared surveys. These have revealed the presence of massive,
quiescent early-type galaxies appearing in the universe as early as z2,
an epoch 3 Gyr after the Big Bang. Their age and formation processes have now
been explained by an improved generation of galaxy formation models where they
form rapidly at z3-4, consistent with the typical masses and ages derived
from their observations. Deeper surveys have now reported evidence for
populations of massive, quiescent galaxies at even higher redshifts and earlier
times, however the evidence for their existence, and redshift, has relied
entirely on coarsely sampled photometry. These early massive, quiescent
galaxies are not predicted by the latest generation of theoretical models.
Here, we report the spectroscopic confirmation of one of these galaxies at
redshift z=3.717 with a stellar mass of 1.710 M whose
absorption line spectrum shows no current star-formation and which has a
derived age of nearly half the age of the Universe at this redshift. The
observations demonstrates that the galaxy must have quickly formed the majority
of its stars within the first billion years of cosmic history in an extreme and
short starburst. This ancestral event is similar to those starting to be found
by sub-mm wavelength surveys pointing to a possible connection between these
two populations. Early formation of such massive systems is likely to require
significant revisions to our picture of early galaxy assembly.Comment: 6 pages, 7 figures. This is the final preprint corresponding closely
to the published version. Uploaded 6 months after publication in accordance
with Nature polic
Predictability of evolutionary trajectories in fitness landscapes
Experimental studies on enzyme evolution show that only a small fraction of
all possible mutation trajectories are accessible to evolution. However, these
experiments deal with individual enzymes and explore a tiny part of the fitness
landscape. We report an exhaustive analysis of fitness landscapes constructed
with an off-lattice model of protein folding where fitness is equated with
robustness to misfolding. This model mimics the essential features of the
interactions between amino acids, is consistent with the key paradigms of
protein folding and reproduces the universal distribution of evolutionary rates
among orthologous proteins. We introduce mean path divergence as a quantitative
measure of the degree to which the starting and ending points determine the
path of evolution in fitness landscapes. Global measures of landscape roughness
are good predictors of path divergence in all studied landscapes: the mean path
divergence is greater in smooth landscapes than in rough ones. The
model-derived and experimental landscapes are significantly smoother than
random landscapes and resemble additive landscapes perturbed with moderate
amounts of noise; thus, these landscapes are substantially robust to mutation.
The model landscapes show a deficit of suboptimal peaks even compared with
noisy additive landscapes with similar overall roughness. We suggest that
smoothness and the substantial deficit of peaks in the fitness landscapes of
protein evolution are fundamental consequences of the physics of protein
folding.Comment: 14 pages, 7 figure
Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology
Effects of Star Formation Stochasticity on the Ly-alpha & Lyman Continuum Emission from Dwarf Galaxies during Reionization
Observations of distant galaxies play a key role in improving our
understanding of the Epoch of Reionization (EoR). The observed Ly-alpha
emission line strength - quantified by its restframe equivalent width (EW) -
provides a valuable diagnostic of stellar populations and dust in galaxies
during and after the EoR. In this paper we quantify the effects of star
formation stochasticity on the predicted Ly-alpha EW in dwarf galaxies, using
the publicly available code SLUG ('Stochastically Light Up Galaxies'). We
compute the number of hydrogen ionizing photons, as well as flux in the Far UV
for a set of models with star formation rates (SFR) in the range 10-3-1
Msol/yr. From these fluxes we compute the luminosity, L-alpha, and the EW of
the Ly-alpha line. We find that stochasticity alone induces a broad
distribution in L-alpha and EW at a fixed SFR, and that the widths of these
distributions decrease with increasing SFR. We parameterize the EW probability
density function (PDF) as an SFR-dependent double power law. We find that it is
possible to have EW as low as ~EW0/4 and as high as ~3 times the EW0, where EW0
denotes the expected EW in the absence of stochasticity. We argue that
stochasticity may therefore be important when linking drop-out and narrow-band
selected galaxies, when identifying population III galaxies, and that it may
help to explain the large EW (EW > 100 - 200 A) observed for a fraction of
Ly-alpha- selected galaxies. Finally, we show that stochasticity can also
affect the inferred escape fraction of ionizing photons from galaxies. In
particular, we argue that stochasticity may simultaneously explain the observed
anomalous ratios of the Lyman continuum flux density to the (non-ionizing) UV
continuum density in so-called Lyman-Bump galaxies at z = 3.1, as well as the
absence of such objects among a sample of z = 1.3 drop-out galaxies.Comment: 9 pages, 4 figures, accepted for publication in MNRA
Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us
Supernova remnants (SNRs) arise from the interaction between the ejecta of a
supernova (SN) explosion and the surrounding circumstellar and interstellar
medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However,
to understand SNRs as a whole, large samples of SNRs must be assembled and
studied. Here, we describe the radio, optical, and X-ray techniques which have
been used to identify and characterize almost 300 Galactic SNRs and more than
1200 extragalactic SNRs. We then discuss which types of SNRs are being found
and which are not. We examine the degree to which the luminosity functions,
surface-brightness distributions and multi-wavelength comparisons of the
samples can be interpreted to determine the class properties of SNRs and
describe efforts to establish the type of SN explosion associated with a SNR.
We conclude that in order to better understand the class properties of SNRs, it
is more important to study (and obtain additional data on) the SNRs in galaxies
with extant samples at multiple wavelength bands than it is to obtain samples
of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by
Athem W. Alsabti and Paul Murdin. Final version available at
https://doi.org/10.1007/978-3-319-20794-0_90-
Establishing a core outcome set for peritoneal dialysis : report of the SONG-PD (standardized outcomes in nephrology-peritoneal dialysis) consensus workshop
Outcomes reported in randomized controlled trials in peritoneal dialysis (PD) are diverse, are measured inconsistently, and may not be important to patients, families, and clinicians. The Standardized Outcomes in Nephrology-Peritoneal Dialysis (SONG-PD) initiative aims to establish a core outcome set for trials in PD based on the shared priorities of all stakeholders. We convened an international SONG-PD stakeholder consensus workshop in May 2018 in Vancouver, Canada. Nineteen patients/caregivers and 51 health professionals attended. Participants discussed core outcome domains and implementation in trials in PD. Four themes relating to the formation of core outcome domains were identified: life participation as a main goal of PD, impact of fatigue, empowerment for preparation and planning, and separation of contributing factors from core factors. Considerations for implementation were identified: standardizing patient-reported outcomes, requiring a validated and feasible measure, simplicity of binary outcomes, responsiveness to interventions, and using positive terminology. All stakeholders supported inclusion of PD-related infection, cardiovascular disease, mortality, technique survival, and life participation as the core outcome domains for PD
- …
