622 research outputs found

    A trans10-18:1 enriched fraction from beef fed a barley grain-based diet induces lipogenic gene expression and reduces viability of HepG2 cells.

    Get PDF
    Beef fat is a natural source of trans (t) fatty acids, and is typically enriched with either t10-18:1 or t11-18:1. Little is known about the bioactivity of individual t-18:1 isomers, and the present study compared the effects of t9-18:1, cis (c)9-18:1 and trans (t)-18:1 fractions isolated from beef fat enriched with either t10-18:1 (HT10) or t11-18:1 (HT11). All 18:1 isomers resulted in reduced human liver (HepG2) cell viability relative to control. Both c9-18:1 and HT11were the least toxic, t9-18:1had dose response increased toxicity, and HT10 had the greatest toxicity (P<0.05). Incorporation of t18:1 isomers was 1.8-2.5 fold greater in triacylglycerol (TG) than phospholipids (PL), whereas Δ9 desaturation products were selectively incorporated into PL. Culturing HepG2 cells with t9-18:1 and HT10 increased (P<0.05) the Δ9 desaturation index (c9-16:1/16:0) compared to other fatty acid treatments. HT10 and t9-18:1 also increased expression of lipogenic genes (FAS, SCD1, HMGCR and SREBP2) compared to control (P<0.05), whereas c9-18:1 and HT11 did not affect the expression of these genes. Our results suggest effects of HT11 and c9-18:1 were similar to BSA control, whereas HT10 and t-9 18:1 (i.e. the predominant trans fatty acid isomer found in partially hydrogenated vegetable oils) were more cytotoxic and led to greater expression of lipogenic genes

    Trifocal Relative Pose from Lines at Points and its Efficient Solution

    Full text link
    We present a new minimal problem for relative pose estimation mixing point features with lines incident at points observed in three views and its efficient homotopy continuation solver. We demonstrate the generality of the approach by analyzing and solving an additional problem with mixed point and line correspondences in three views. The minimal problems include correspondences of (i) three points and one line and (ii) three points and two lines through two of the points which is reported and analyzed here for the first time. These are difficult to solve, as they have 216 and - as shown here - 312 solutions, but cover important practical situations when line and point features appear together, e.g., in urban scenes or when observing curves. We demonstrate that even such difficult problems can be solved robustly using a suitable homotopy continuation technique and we provide an implementation optimized for minimal problems that can be integrated into engineering applications. Our simulated and real experiments demonstrate our solvers in the camera geometry computation task in structure from motion. We show that new solvers allow for reconstructing challenging scenes where the standard two-view initialization of structure from motion fails.Comment: This material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while most authors were in residence at Brown University's Institute for Computational and Experimental Research in Mathematics -- ICERM, in Providence, R

    A New Heavy Flavor Program for the Future Electron-Ion Collider

    Full text link
    The proposed high-energy and high-luminosity Electron-Ion Collider (EIC) will provide one of the cleanest environments to precisely determine the nuclear parton distribution functions (nPDFs) in a wide xx-Q2Q^{2} range. Heavy flavor production at the EIC provides access to nPDFs in the poorly constrained high Bjorken-xx region, allows us to study the quark and gluon fragmentation processes, and constrains parton energy loss in cold nuclear matter. Scientists at the Los Alamos National Laboratory are developing a new physics program to study heavy flavor production, flavor tagged jets, and heavy flavor hadron-jet correlations in the nucleon/nucleus going direction at the future EIC. The proposed measurements will provide a unique way to explore the flavor dependent fragmentation functions and energy loss in a heavy nucleus. They will constrain the initial-state effects that are critical for the interpretation of previous and ongoing heavy ion measurements at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We show an initial conceptual design of the proposed Forward Silicon Tracking (FST) detector at the EIC, which is essential to carry out the heavy flavor measurements. We further present initial feasibility studies/simulations of heavy flavor hadron reconstruction using the proposed FST.Comment: 6 pages, 5 figures, proceedings for the XLIX International Symposium on Multiparticle Dynamics (ISMD2019) (9-13 September 2019) conferenc

    Slicing and Brane Dependence of the (A)dS/CFT Correspondence

    Get PDF
    We investigate the slicing dependence of the relationship between conserved quantities in the (A)dS/CFT correspondence. Specifically, we show that the Casimir energy depends upon the topology and geometry of spacetime foliations of the bulk near the conformal boundary. We point out that the determination of the brane location in brane-world scenarios exhibits a similar slicing dependence, and we comment on this in the context of the AdS/CFT correspondence conjecture.Comment: latex, 6 pages, minor changes in wording, reference adde

    Protocol for a multicentre randomised feasibility trial evaluating early Surgery Alone In LOw Rectal cancer (SAILOR)

    Get PDF
    Introduction There are 11,500 rectal cancers diagnosed annually in the UK. Although surgery remains the primary treatment there is evidence that preoperative radiotherapy (RT) improves local recurrence rates. High quality surgery in rectal cancer is equally important in minimising local recurrence. Advances in magnetic resonance imaging (MRI)-guided prediction of resection margin status and improvements in abdominoperineal excision of the rectum (APER) technique supports a reassessment of the contribution of preoperative RT. A more selective approach to RT may be appropriate given the associated toxicity. Methods and analysis This trial will explore the feasibility of a definitive trial evaluating the omission of RT in resectable low rectal cancer requiring APER. It will test the feasibility of randomising patients to i) standard care (neoadjuvant long course radiotherapy +/- chemotherapy and APER, or ii) APER surgery alone for cT2/T3ab N0/1 low rectal cancer with clear predicted resection margins on MRI. Radiotherapy schedule will be 45Gy over 5 weeks as current standard, with restaging and surgery after 8-12 weeks. Recruitment will be for 24 months with a minimum 12 month follow up. Objectives include testing the ability to recruit, consent and retain patients, to quantify the number of patients eligible for a definitive trial and to test feasibility of outcomes measures. These include locoregional recurrence rates, distance to circumferential resection margin, toxicity and surgical complications including perineal wound healing, quality of life and economic analysis. The quality of MRI staging, radiotherapy delivery and surgical specimen quality will be closely monitored. Ethics and dissemination The trial is approved by the regional ethics committee and Health Research Authority (HRA) or equivalent. Written informed consent will be obtained. Serious adverse events will be reported to Swansea Trials Unit (STU), the ethics committee and trial sites. Trial results will be submitted for peer review publication and to trial participants. Strengths and limitations of this study • A unique interventional study specific to low rectal cancer • Will explore the contribution of the modern abdominoperineal excision operation to cancer outcomes • Strict quality assurance processes for imaging, radiotherapy, surgery and pathology • Will establish if a future trial minimising radiotherapy use in low rectal cancer is feasible • Study is limited by short follow up perio

    Holographic QCD: Past, Present, and Future

    Full text link
    At the dawn of a new theoretical tool based on the AdS/CFT correspondence for nonperturbative aspects of quantum chromodynamics, we give an interim review on the new tool, holographic QCD, with some of its accomplishment. We try to give an A-to-Z picture of the holographic QCD, from string theory to a few selected top-down holographic QCD models with one or two physical applications in each model. We may not attempt to collect diverse results from various holographic QCD model studies.Comment: 80 pages, 18 figures, LaTeX; references added, published version + appendi

    Structure in 6D and 4D N=1 supergravity theories from F-theory

    Get PDF
    We explore some aspects of 4D supergravity theories and F-theory vacua that are parallel to structures in the space of 6D theories. The spectrum and topological terms in 4D supergravity theories correspond to topological data of F-theory geometry, just as in six dimensions. In particular, topological axion-curvature squared couplings appear in 4D theories; these couplings are characterized by vectors in the dual to the lattice of axion shift symmetries associated with string charges. These terms are analogous to the Green-Schwarz terms of 6D supergravity theories, though in 4D the terms are not generally linked with anomalies. We outline the correspondence between F-theory topology and data of the corresponding 4D supergravity theories. The correspondence of geometry with structure in the low-energy action illuminates topological aspects of heterotic-F-theory duality in 4D as well as in 6D. The existence of an F-theory realization also places geometrical constraints on the 4D supergravity theory in the large-volume limit.Comment: 63 page

    Alterations of brain and cerebellar proteomes linked to Aβ and tau pathology in a female triple-transgenic murine model of Alzheimer's disease

    Get PDF
    The triple-transgenic Alzheimer (3 × Tg-AD) mouse expresses mutant PS1M146V, APPswe, and tauP301L transgenes and progressively develops plaques and neurofibrillary tangles with a temporal- and region-specific profile that resembles the neuropathological progression of Alzheimer's disease (AD). In this study, we used proteomic approaches such as two-dimensional gel electrophoresis and mass spectrometry to investigate the alterations in protein expression occurring in the brain and cerebellum of 3 × Tg-AD and presenilin-1 (PS1) knock-in mice (animals that do not develop Aβ- or tau-dependent pathology nor cognitive decline and were used as control). Finally, using the Ingenuity Pathway Analysis we evaluated novel networks and molecular pathways involved in this AD model. We identified several differentially expressed spots and analysis of 3 × Tg-AD brains showed a significant downregulation of synaptic proteins that are involved in neurotransmitter synthesis, storage and release, as well as a set of proteins that are associated with cytoskeleton assembly and energy metabolism. Interestingly, in the cerebellum, a structure not affected by AD, we found an upregulation of proteins involved in carbohydrate metabolism and protein catabolism. Our findings help to unravel the pathogenic brain mechanisms set in motion by mutant amyloid precursor protein (APP) and hyperphosphorylated tau. These data also reveal cerebellar pathways that may be important to counteract the pathogenic actions of Aβ and tau, and ultimately offer novel targets for therapeutic intervention

    Uncultivated Microbial Eukaryotic Diversity: A Method to Link ssu rRNA Gene Sequences with Morphology

    Get PDF
    Protists have traditionally been identified by cultivation and classified taxonomically based on their cellular morphologies and behavior. In the past decade, however, many novel protist taxa have been identified using cultivation independent ssu rRNA sequence surveys. New rRNA “phylotypes” from uncultivated eukaryotes have no connection to the wealth of prior morphological descriptions of protists. To link phylogenetically informative sequences with taxonomically informative morphological descriptions, we demonstrate several methods for combining whole cell rRNA-targeted fluorescent in situ hybridization (FISH) with cytoskeletal or organellar immunostaining. Either eukaryote or ciliate-specific ssu rRNA probes were combined with an anti-α-tubulin antibody or phalloidin, a common actin stain, to define cytoskeletal features of uncultivated protists in several environmental samples. The eukaryote ssu rRNA probe was also combined with Mitotracker® or a hydrogenosomal-specific anti-Hsp70 antibody to localize mitochondria and hydrogenosomes, respectively, in uncultivated protists from different environments. Using rRNA probes in combination with immunostaining, we linked ssu rRNA phylotypes with microtubule structure to describe flagellate and ciliate morphology in three diverse environments, and linked Naegleria spp. to their amoeboid morphology using actin staining in hay infusion samples. We also linked uncultivated ciliates to morphologically similar Colpoda-like ciliates using tubulin immunostaining with a ciliate-specific rRNA probe. Combining rRNA-targeted FISH with cytoskeletal immunostaining or stains targeting specific organelles provides a fast, efficient, high throughput method for linking genetic sequences with morphological features in uncultivated protists. When linked to phylotype, morphological descriptions of protists can both complement and vet the increasing number of sequences from uncultivated protists, including those of novel lineages, identified in diverse environments
    corecore