307 research outputs found
Euclid Space Mission: building the sky survey
The Euclid space mission proposes to survey 15000 square degrees of the
extragalactic sky during 6 years, with a step-and-stare technique. The
scheduling of observation sequences is driven by the primary scientific
objectives, spacecraft constraints, calibration requirements and physical
properties of the sky. We present the current reference implementation of the
Euclid survey and on-going work on survey optimization.Comment: to appear in Proceedings IAU Symposium No. 306, "Statistical
Challenges in 21st Century Cosmology", A.F. Heavens, J.-L. Starck & A.
Krone-Martins, ed
Euclid space mission: a cosmological challenge for the next 15 years
Euclid is the next ESA mission devoted to cosmology. It aims at observing
most of the extragalactic sky, studying both gravitational lensing and
clustering over 15,000 square degrees. The mission is expected to be
launched in year 2020 and to last six years. The sheer amount of data of
different kinds, the variety of (un)known systematic effects and the complexity
of measures require efforts both in sophisticated simulations and techniques of
data analysis. We review the mission main characteristics, some aspects of the
the survey and highlight some of the areas of interest to this meetingComment: to appear in Proceedings IAU Symposium No. 306, 2014, "Statistical
Challenges in 21st Century Cosmology", A.F. Heavens, J.-L. Starck & A.
Krone-Martins, ed
Circulating Matrix Metalloproteinase-9 Is Associated with Cardiovascular Risk Factors in a Middle-Aged Normal Population
Background: Elevated levels of circulating matrix metalloproteinase-9 (MMP-9) have been demonstrated in patients with established coronary artery disease (CAD). The aim of this study was to analyse levels of MMP-9 in a population free from symptomatic CAD and investigate their associations with cardiovascular (CV) risk factors, including C-reactive protein (CRP). Â Methods: A cross-sectional study was performed in a population based random sample aged 45â69 (n = 345, 50% women). MMP-9 levels were measured in EDTA-plasma using an ELISA-method. CV risk factors were measured using questionnaires and standard laboratory methods. Results: Plasma MMP-9 was detectable in all participants, mean 38.9 ng/mL (SD 22.1 ng/mL). Among individuals without reported symptomatic CAD a positive association (p<0.001) was seen, for both men and women, of MMP-9 levels regarding total risk load of eight CV risk factors i.e. blood pressure, dyslipidemia, diabetes, obesity, smoking, alcohol intake, physical activity and fruit and vegetable intake. The association was significant also after adjustment for CRP, and was not driven by a single risk factor alone. In regression models adjusted for age, sex, smoking, alcohol intake and CRP, elevated MMP-9 levels were independently positively associated with systolic blood pressure (p = 0.037), smoking (p<0.001), alcohol intake (p = 0.003) and CRP (p<0.001). The correlation coefficient between MMP-9 and CRP was r = 0.24 (p<0.001). Â Conclusions: In a population without reported symptomatic CAD, MMP-9 levels were associated with total CV risk load as well as with single risk factors. This was found also after adjustment for CRP Â Original Publication: Peter Garvin, Lennart Nilsson, John Carstensen, Lena Jonasson and Margareta Kristenson, Circulating Matrix Metalloproteinase-9 Is Associated with Cardiovascular Risk Factors in a Middle-Aged Normal Population, 2008, PLoS ONE, (3), 3, e1774. http://dx.doi.org/10.1371/journal.pone.0001774 Licensee: Public Library of Science (PLoS) http://www.plos.org/</p
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGOâs first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Intracellular Targeting Specificity of Novel Phthalocyanines Assessed in a Host-Parasite Model for Developing Potential Photodynamic Medicine
Photodynamic therapy, unlikely to elicit drug-resistance, deserves attention as a strategy to counter this outstanding problem common to the chemotherapy of all diseases. Previously, we have broadened the applicability of this modality to photodynamic vaccination by exploiting the unusual properties of the trypanosomatid protozoa, Leishmania, i.e., their innate ability of homing to the phagolysosomes of the antigen-presenting cells and their selective photolysis therein, using transgenic mutants endogenously inducible for porphyrin accumulation. Here, we extended the utility of this host-parasite model for in vitro photodynamic therapy and vaccination by exploring exogenously supplied photosensitizers. Seventeen novel phthalocyanines (Pcs) were screened in vitro for their photolytic activity against cultured Leishmania. Pcs rendered cationic and soluble (csPcs) for cellular uptake were phototoxic to both parasite and host cells, i.e., macrophages and dendritic cells. The csPcs that targeted to mitochondria were more photolytic than those restricted to the endocytic compartments. Treatment of infected cells with endocytic csPcs resulted in their accumulation in Leishmania-containing phagolysosomes, indicative of reaching their target for photodynamic therapy, although their parasite versus host specificity is limited to a narrow range of csPc concentrations. In contrast, Leishmania pre-loaded with csPc were selectively photolyzed intracellularly, leaving host cells viable. Pre-illumination of such csPc-loaded Leishmania did not hinder their infectivity, but ensured their intracellular lysis. Ovalbumin (OVA) so delivered by photo-inactivated OVA transfectants to mouse macrophages and dendritic cells were co-presented with MHC Class I molecules by these antigen presenting cells to activate OVA epitope-specific CD8+T cells. The in vitro evidence presented here demonstrates for the first time not only the potential of endocytic csPcs for effective photodynamic therapy against Leishmania but also their utility in photo-inactivation of Leishmania to produce a safe carrier to express and deliver a defined antigen with enhanced cell-mediated immunity
Mesenteric Resistance Arteries in Type 2 Diabetic db/db Mice Undergo Outward Remodeling
Resistance vessel remodeling is controlled by myriad of hemodynamic and neurohormonal factors. This study characterized structural and molecular remodeling in mesenteric resistance arteries (MRAs) in diabetic (db/db) and control (Db/db) mice.Structural properties were assessed in isolated MRAs from 12 and 16 wk-old db/db and Db/db mice by pressure myography. Matrix regulatory proteins were measured by Western blot analysis. Mean arterial pressure and superior mesenteric blood flow were measured in 12 wk-old mice by telemetry and a Doppler flow nanoprobe, respectively.Blood pressure was similar between groups. Lumen diameter and medial cross-sectional area were significantly increased in 16 wk-old db/db MRA compared to control, indicating outward hypertrophic remodeling. Moreover, wall stress and cross-sectional compliance were significantly larger in diabetic arteries. These remodeling indices were associated with increased expression of matrix regulatory proteins matrix metalloproteinase (MMP)-9, MMP-12, tissue inhibitors of matrix metalloproteinase (TIMP)-1, TIMP-2, and plasminogen activator inhibitor-1 (PAI-1) in db/db arteries. Finally, superior mesenteric artery blood flow was increased by 46% in 12 wk-old db/db mice, a finding that preceded mesenteric resistance artery remodeling.These data suggest that flow-induced hemodynamic changes may supersede the local neurohormonal and metabolic milieu to culminate in hypertrophic outward remodeling of type 2 DM mesenteric resistance arteries
Unacylated Ghrelin Rapidly Modulates Lipogenic and Insulin Signaling Pathway Gene Expression in Metabolically Active Tissues of GHSR Deleted Mice
Background: There is increasing evidence that unacylated ghrelin (UAG) improves insulin sensitivity and glucose homeostasis; however, the mechanism for this activity is not fully understood since a UAG receptor has not been discovered. Methodology/Principal Findings: To assess potential mechanisms of UAG action in vivo, we examined rapid effects of UAG on genome-wide expression patterns in fat, muscle and liver of growth hormone secretagogue receptor (GHSR)-ablated mice using microarrays. Expression data were analyzed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. Regulation of subsets of these genes was verified by quantitative PCR in an independent experiment. UAG acutely regulated clusters of genes involved in glucose and lipid metabolism in all three tissues, consistent with enhancement of insulin sensitivity. Conclusions/Significance: Fat, muscle and liver are central to the control of lipid and glucose homeostasis. UAG rapidly modulates the expression of metabolically important genes in these tissues in GHSR-deleted mice indicating a direct, GHSRindependent, action of UAG to improve insulin sensitivity and metabolic profile
Nutraceutical therapies for atherosclerosis
Atherosclerosis is a chronic inflammatory disease affecting large and medium arteries and is considered to be a major underlying cause of cardiovascular disease (CVD). Although the development of pharmacotherapies to treat CVD has contributed to a decline in cardiac mortality in the past few decades, CVD is estimated to be the cause of one-third of deaths globally. Nutraceuticals are natural nutritional compounds that are beneficial for the prevention or treatment of disease and, therefore, are a possible therapeutic avenue for the treatment of atherosclerosis. The purpose of this Review is to highlight potential nutraceuticals for use as antiatherogenic therapies with evidence from in vitro and in vivo studies. Furthermore, the current evidence from observational and randomized clinical studies into the role of nutraceuticals in preventing atherosclerosis in humans will also be discussed
Molecular mechanisms of vaspin action: from adipose tissue to skin and bone, from blood vessels to the brainÂ
Visceral adipose tissue derived serine protease inhibitor (vaspin) or SERPINA12 according to the serpin nomenclature was identified together with other genes and gene products thatÂ
were specifically expressed or overexpressed in the intra abdominal or visceral adipose tissue (AT) of the Otsuka Long-Evans Tokushima fatty rat. These rats spontaneously develop visceral obesity, insulin resistance, hyperinsulinemia and âglycemia, as well as hypertension and thus represent a well suited animal model of obesity and related metabolic disorders such as type 2 diabetes. The follow-up study reporting the cloning, expression and functional characterization of vaspin suggested the great and promising potential of this molecule to counteract obesity induced insulin resistance and inflammation and has since initiated over 300 publications, clinical and experimental, that have contributed to uncover the multifaceted functions and molecular mechanisms of vaspin action not only in the adipose, but in many different cells, tissues and organs. This review will give an update on mechanistic and structural aspects of vaspin with a focus on its serpin function, the physiology and regulation of vaspin expression, and will summarize the latest on vaspin function in various tissues such as the different adipose tissue depots as well as the vasculature, skin, bone and the brain
- âŠ