249 research outputs found

    Thermal compression of atomic hydrogen on helium surface

    Full text link
    We describe experiments with spin-polarized atomic hydrogen gas adsorbed on liquid 4^{4}He surface. The surface gas density is increased locally by thermal compression up to 5.5×10125.5\times10^{12} cm2^{-2} at 110 mK. This corresponds to the onset of quantum degeneracy with the thermal de-Broglie wavelength being 1.5 times larger than the mean interatomic spacing. The atoms were detected directly with a 129 GHz electron-spin resonance spectrometer probing both the surface and the bulk gas. This, and the simultaneous measurement of the recombination power, allowed us to make accurate studies of the adsorption isotherm and the heat removal from the adsorbed hydrogen gas. From the data, we estimate the thermal contact between 2D hydrogen gas and phonons of the helium film. We analyze the limitations of the thermal compression method and the possibility to reach the superfluid transition in 2D hydrogen gas.Comment: 20 pages, 11 figure

    Classical approach in quantum physics

    Full text link
    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom recently discovered with the help of Poincareˊ\acute{\mathrm{e}} section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treating as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormgroup symmetry, criterion of accuracy and so on are reviewed as well. In conclusion, the relation between quantum theory, classical physics and measurement is discussed.Comment: This review paper was rejected from J.Phys.A with referee's comment "The author has made many worthwhile contributions to semiclassical physics, but this article does not meet the standard for a topical review"

    The attenuation of central angiotensin II-dependent pressor response and intra-neuronal signaling by intracarotid injection of nanoformulated copper/zinc superoxide dismutase

    Get PDF
    Adenoviral-mediated overexpression of the intracellular superoxide (O2·-) scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD) in the brain attenuates central angiotensin II (AngII)-induced cardiovascular responses. However, the therapeutic potential for adenoviral vectors is weakened by toxicity and the inability of adenoviral vectors to target the brain following peripheral administration. Therefore, we developed a non-viral delivery system in which CuZnSOD protein is electrostatically bound to a synthetic poly(ethyleneimine)-poly(ethyleneglycol) (PEI-PEG) polymer to form a polyion complex (CuZnSOD nanozyme). We hypothesized that PEI-PEG polymer increases transport of functional CuZnSOD to neurons, which inhibits AngII intra-neuronal signaling. The AngII-induced increase in O2·-, as measured by dihydroethidium fluorescence and electron paramagnetic resonance spectroscopy, was significantly inhibited in CuZnSOD nanozyme-treated neurons compared to free CuZnSOD- and non-treated neurons. CuZnSOD nanozyme also attenuated the AngII-induced inhibition of K+ current in neurons. Intracarotid injection of CuZnSOD nanozyme into rabbits significantly inhibited the pressor response of intracerebroventricular-delivered AngII; however, intracarotid injection of free CuZnSOD or PEI-PEG polymer alone failed to inhibit this response. Importantly, neither the PEI-PEG polymer alone nor the CuZnSOD nanozyme induced neuronal toxicity. These findings indicate that CuZnSOD nanozyme inhibits AngII intra-neuronal signaling in vitro and in vivo

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Discovery of predictors of sudden cardiac arrest in diabetes: rationale and outline of the RESCUED (REcognition of Sudden Cardiac arrest vUlnErability in Diabetes) project

    Get PDF
    Introduction Early recognition of individuals with increased risk of sudden cardiac arrest (SCA) remains challenging. SCA research so far has used data from cardiologist care, but missed most SCA victims, since they were only in general practitioner (GP) care prior to SCA. Studying individuals with type 2 diabetes (T2D) in GP care may help solve this problem, as they have increased risk for SCA, and rich clinical datasets, since they regularly visit their GP for check-up measurements. This information can be further enriched with extensive genetic and metabolic information. Aim To describe the study protocol of the REcognition of Sudden Cardiac arrest vUlnErability in Diabetes (RESCUED) project, which aims at identifying clinical, genetic and metabolic factors contributing to SCA risk in individuals with T2D, and to develop a prognostic model for the risk of SCA. Methods The RESCUED project combines data from dedicated SCA and T2D cohorts, and GP data, from the same region in the Netherlands. Clinical data, genetic data (common and rare variant analysis) and metabolic data (metabolomics) will be analysed (using classical analysis techniques and machine learning methods) and combined into a prognostic model for risk of SCA. Conclusion The RESCUED project is designed to increase our ability at early recognition of elevated SCA risk through an innovative strategy of focusing on GP data and a multidimensional methodology including clinical, genetic and metabolic analyses.Molecular Epidemiolog

    Investigating Guided Extensive Reading And Vocabulary Knowledge Performance Among Remedial Esl Learners In A Public University In Malaysia

    Get PDF
    Penyelidikan menyokong pembacaan ekstensif, yang tertumpu pada pembelajaran kebetulan (incidental learning), sebagai wadah utama bagi perkembangan pengetahuan kosa kata bahasa kedua/asing. Research supports extensive reading, which draws on incidental learning, as a primary tool for second/foreign language vocabulary knowledge development

    Measurements of Ξ(1530)0{\Xi \left( 1530\right) ^{0}} and Ξ(1530)0{\overline{\Xi }\left( 1530\right) ^{0}} production in proton–proton interactions at sNN\sqrt{s_{NN}} = 17.3  = 17.3  GeV \text{ GeV } in the NA61/SHINE experiment

    Get PDF
    Double-differential yields of Ξ(1530)0\Xi\left(1530\right)^{0} and Ξ(1530)0\overline{\Xi}\left(1530\right)^{0} resonances produced in \pp interactions were measured at a laboratory beam momentum of 158~\GeVc. This measurement is the first of its kind in \pp interactions below LHC energies. It was performed at the CERN SPS by the \NASixtyOne collaboration. Double-differential distributions in rapidity and transverse momentum were obtained from a sample of 26\cdot106^6 inelastic events. The spectra are extrapolated to full phase space resulting in mean multiplicity of Ξ(1530)0\Xi\left(1530\right)^{0} (6.73 ±\pm 0.25 ±\pm 0.67)×104\times10^{-4} and Ξ(1530)0\overline{\Xi}\left(1530\right)^{0} (2.71 ±\pm 0.18 ±\pm 0.18)×104\times10^{-4}. The rapidity and transverse momentum spectra and mean multiplicities were compared to predictions of string-hadronic and statistical model calculations

    Measurements of Ξ{\Xi }{^-} and Ξ+\overline{\Xi }{^+} production in proton–proton interactions at sNN\sqrt{s_{NN}}=17.3 GeV = 17.3 GeV in the NA61/SHINE experiment

    Get PDF
    International audienceThe production of Ξ(1321)\Xi (1321)^{-} and Ξ(1321)+\overline{\Xi }(1321)^{+} hyperons in inelastic p+p interactions is studied in a fixed target experiment at a beam momentum of 158 GeV ⁣/ ⁣c\hbox {Ge}\hbox {V}\!/\!c. Double differential distributions in rapidity y{y} and transverse momentum pTp_{T} are obtained from a sample of 33M inelastic events. They allow to extrapolate the spectra to full phase space and to determine the mean multiplicity of both Ξ{\Xi }{^-} and Ξ+\overline{\Xi }{^+} . The rapidity and transverse momentum spectra are compared to transport model predictions. The Ξ{\Xi }{^-} mean multiplicity in inelastic p+p interactions at 158 GeV ⁣/ ⁣c\hbox {Ge}\hbox {V}\!/\!c is used to quantify the strangeness enhancement in A+A collisions at the same centre-of-mass energy per nucleon pair
    corecore