154 research outputs found

    Sox21b underlies the rapid diversification of a novel male genital structure between Drosophila species

    Get PDF
    The emergence and diversification of morphological novelties is a major feature of animal evolution. However, relatively little is known about the genetic basis of the evolution of novel structures and the mechanisms underlying their diversification. The epandrial posterior lobes of male genitalia are a novelty of particular Drosophila species. The lobes grasp the female ovipositor and insert between her abdominal tergitesand, therefore, are important for copulation and species recognition. The posterior lobes likely evolved from co-option of a Hox-regulated gene network from the posterior spiracles and have sincediversified in morphology in the D.simulans clade, in particular, over the last 240,000 years, drivenby sexual selection. The genetic basis of this diversification is polygenic but, to the best ofour knowledge, none of the causative genes have been identified. Identifying the genes underlyingthe diversification of these secondary sexual structures is essential to understanding theevolutionary impact on copulation and species recognition. Here, we show that Sox21b negatively regulates posterior lobe size. This is consistent with expanded Sox21b expression in D.mauritiana, which develops smaller posterior lobes than D.simulans. We tested this by generating reciprocal hemizygotes and confirmed that changes in Sox21b underlie posterior lobe evolution between these species. Furthermore, we found that posterior lobe size differences caused by the species-specific allele of Sox21b significantly affect copulation duration. Taken together, our study reveals the genetic basis for the sexual-selection-driven diversification of a novel morphological structure and its functional impact on copulatory behavior. [Abstract copyright: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

    tartan underlies the evolution of male Drosophila genital morphology

    Get PDF
    Male genital structures are among the most rapidly evolving morphological traits and are often the only features that can distinguish closely related species. This process is thought to be driven by sexual selection and may reinforce species separation. However, while the genetic bases of many phenotypic differences have been identified, we still lack knowledge about the genes underlying evolutionary differences in male genital organs and organ size more generally. The claspers (surstyli) are periphallic structures that play an important role in copulation in insects. Here, we show that divergence in clasper size and bristle number between Drosophila mauritiana and Drosophila simulans is caused by evolutionary changes in tartan (trn), which encodes a transmembrane leucine-rich repeat domain protein that mediates cell–cell interactions and affinity. There are no fixed amino acid differences in trn between D. mauritiana and D. simulans, but differences in the expression of this gene in developing genitalia suggest that cis-regulatory changes in trn underlie the evolution of clasper morphology in these species. Finally, analyses of reciprocal hemizygotes that are genetically identical, except for the species from which the functional allele of trn originates, determined that the trn allele of D. mauritiana specifies larger claspers with more bristles than the allele of D. simulans. Therefore, we have identified a gene underlying evolutionary change in the size of a male genital organ, which will help to better understand not only the rapid diversification of these structures, but also the regulation and evolution of organ size more broadly

    Unravelling the genetic basis for the rapid diversification of male genitalia between Drosophila species

    Get PDF
    In the last 240,000 years, males of the Drosophila simulans species clade have evolved striking differences in the morphology of their epandrial posterior lobes and claspers (surstyli). These appendages are used for grasping the female during mating and so their divergence is most likely driven by sexual selection. Mapping studies indicate a highly polygenic and generally additive genetic basis for these morphological differences. However, we have limited understanding of the gene regulatory networks that control the development of genital structures and how they evolved to result in this rapid phenotypic diversification. Here, we used new D. simulans/D. mauritiana introgression lines on chromosome 3L to generate higher resolution maps of posterior lobe and clasper differences between these species. We then carried out RNA-seq on the developing genitalia of both species to identify the expressed genes and those that are differentially expressed between the two species. This allowed us to test the function of expressed positional candidates during genital development in D. melanogaster. We identified several new genes involved in the development and possibly the evolution of these genital structures, including the transcription factors Hairy and Grunge. Furthermore, we discovered that during clasper development Hairy negatively regulates tartan (trn), a gene known to contribute to divergence in clasper morphology. Taken together, our results provide new insights into the regulation of genital development and how this has evolved between species

    First observation of the decay Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} and a measurement of the ratio of branching fractions B(Bˉs0D0K0)B(Bˉ0D0ρ0)\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)}

    Get PDF
    The first observation of the decay Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} using pppp data collected by the LHCb detector at a centre-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 36 pb1^{-1}, is reported. A signal of 34.4±6.834.4 \pm 6.8 events is obtained and the absence of signal is rejected with a statistical significance of more than nine standard deviations. The Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} branching fraction is measured relative to that of Bˉ0D0ρ0\bar{B}^0 \to D^0 \rho^0: B(Bˉs0D0K0)B(Bˉ0D0ρ0)=1.48±0.34±0.15±0.12\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)} = 1.48 \pm 0.34 \pm 0.15 \pm 0.12, where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the ratio of the B0B^0 and Bs0B^0_s hadronisation fractions.Comment: 10 pages, 3 figures, submitted to Phys. Lett. B; ISSN 0370-269

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Prompt K_short production in pp collisions at sqrt(s)=0.9 TeV

    Get PDF
    The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 < pT < 1.6 GeV/c and 2.5 < y < 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.Comment: 6+18 pages, 6 figures, updated author lis

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Experimental progress in positronium laser physics

    Get PDF
    corecore