11 research outputs found

    ClinGen--the Clinical Genome Resource.

    Get PDF
    Contains fulltext : 156881.pdf (publisher's version ) (Open Access

    HGVS Recommendations for the Description of Sequence Variants: 2016 Update

    Get PDF
    The consistent and unambiguous description of sequence variants is essential to report and exchange information on the analysis of a genome. In particular, DNA diagnostics critically depends on accurate and standardized description and sharing of the variants detected. The sequence variant nomenclature system proposed in 2000 by the Human Genome Variation Society has been widely adopted and has developed into an internationally accepted standard. The recommendations are currently commissioned through a Sequence Variant Description Working Group (SVD-WG) operating under the auspices of three international organizations: the Human Genome Variation Society (HGVS), the Human Variome Project (HVP), and the Human Genome Organization (HUGO). Requests for modifications and extensions go through the SVD-WG following a standard procedure including a community consultation step. Version numbers are assigned to the nomenclature system to allow users to specify the version used in their variant descriptions. Here, we present the current recommendations, HGVS version 15.11, and briefly summarize the changes that were made since the 2000 publication. Most focus has been on removing inconsistencies and tightening definitions allowing automatic data processing. An extensive version of the recommendations is available online, at http://www.HGVS.org/varnomen

    Dense Subgraphs with Restrictions and Applications to Gene Annotation Graphs

    No full text
    Abstract. In this paper, we focus on finding complex annotation patterns representing novel and interesting hypotheses from gene annotation data. We define a generalization of the densest subgraph problem by adding an additional distance restriction (defined by a separate metric) to the nodes of the subgraph. We show that while this generalization makes the problem NP-hard for arbitrary metrics, when the metric comes from the distance metric of a tree, or an interval graph, the problem can be solved optimally in polynomial time. We also show that the densest subgraph problem with a specified subset of vertices that have to be included in the solution can be solved optimally in polynomial time. In addition, we consider other extensions when not just one solution needs to be found, but we wish to list all subgraphs of almost maximum density as well. We apply this method to a dataset of genes and their annotations obtained from The Arabidopsis Information Resource (TAIR). A user evaluation confirms that the patterns found in the distance restricted densest subgraph for a dataset of photomorphogenesis genes are indeed validated in the literature; a control dataset validates that these are not random patterns. Interestingly, the complex annotation patterns potentially lead to new and as yet unknown hypotheses. We perform experiments to determine the properties of the dense subgraphs, as we vary parameters, including the number of genes and the distance.

    Differential Expression Analysis of Complex RNA-seq Experiments Using edgeR ∗

    No full text
    This article reviews the statistical theory underlying the edgeR software package for differential expression of RNA-seq data. Negative binomial models are used to capture the quadratic mean-variance relationship that can be observed in RNA-seq data. Conditional likelihood methods are used to avoid bias when estimating the level of variation. Empirical Bayes methods are used to allow gene-specific variation estimates even when the number of replicate samples is very small. Generalized linear models are used to accommodate arbitrarily complex designs. A key feature of the edgeR package is the use of weighted likelihood methods to implement a flexible empirical Bayes approach in the absence of easily tractable sampling distributions. The methodology is implemented in flexible software that is easy to use even for users who are not professional statisticians or bioinformaticians. The software is part of the Bioconductor project. This article describes some recently implemented features. Loess-style weighting is used to improve the weighted likelihood approach, and an analogy with quasilikelihood is used to estimate the optimal weight to be given to the empirical Bayes prior. The article includes a fully worked case study with complete code.

    Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach

    No full text
    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases. © 2011 Nature America, Inc. All rights reserved

    Mouse chromosome 15.

    No full text

    Mouse Chromosome 15

    No full text

    Mouse chromosome 15

    No full text
    corecore