149 research outputs found

    Nucleon-nucleon momentum correlation function for light nuclei

    Get PDF
    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics.Comment: Talk given at the 18th International IUPAP Conference on Few-Body Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To appear in Nucl. Phys.

    Neutron/proton ratio of nucleon emissions as a probe of neutron skin

    Full text link
    The dependence between neutron-to-proton yield ratio (RnpR_{np}) and neutron skin thickness (δnp\delta_{np}) in neutron-rich projectile induced reactions is investigated within the framework of the Isospin-Dependent Quantum Molecular Dynamics (IQMD) model. The density distribution of the Droplet model is embedded in the initialization of the neutron and proton densities in the present IQMD model. By adjusting the diffuseness parameter of neutron density in the Droplet model for the projectile, the relationship between the neutron skin thickness and the corresponding RnpR_{np} in the collisions is obtained. The results show strong linear correlation between RnpR_{np} and δnp\delta_{np} for neutron-rich Ca and Ni isotopes. It is suggested that RnpR_{np} may be used as an experimental observable to extract δnp\delta_{np} for neutron-rich nuclei, which is very significant to the study of the nuclear structure of exotic nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.

    Scaling of Anisotropic Flow and Momentum-Space Densities for Light Particles in Intermediate Energy Heavy Ion Collisions

    Get PDF
    Anisotropic flows (v2v_2 and v4v_4) of light nuclear clusters are studied by Isospin-Dependent Quantum Molecular Dynamics model for the system of 86^{86}Kr + 124^{124}Sn at intermediate energy and large impact parameters. Number-of-nucleon scaling of the elliptic flow (v2v_2) are demonstrated for the light fragments up to AA = 4, and the ratio of v4/v22v_4/v_2^2 shows a constant value of 1/2. In addition, the momentum-space densities of different clusters are also surveyed as functions of transverse momentum, in-plane transverse momentum and azimuth angle relative to the reaction plane. The results can be essentially described by momentum-space power law. All the above phenomena indicate that there exists a number-of-nucleon scaling for both anisotropic flow and momentum-space densities for light clusters, which can be understood by the coalescence mechanism in nucleonic degree of freedom for the cluster formation.Comment: 8 pages, 3 figures; to be published in Physics Letters

    Scaling of anisotropy flows in intermediate energy heavy ion collisions

    Get PDF
    Anisotropic flows (v1v_1, v2v_2 and v4v_4) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v1v_1) and elliptic flow (v2v_2) are demonstrated for light nuclear clusters. Moreover, the ratios of v4/v22v_4/v_2^2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the proceeding issue in Nuclear Physics

    Azimuthal asymmetry of direct photons in intermediate energy heavy-ion collisions

    Get PDF
    Hard photon emitted from energetic heavy ion collisions is of very interesting since it does not experience the late-stage nuclear interaction, therefore it is useful to explore the early-stage information of matter phase. In this work, we have presented a first calculation of azimuthal asymmetry, characterized by directed transverse flow parameter FF and elliptic asymmetry coefficient v2v_2, for proton-neutron bremsstrahlung hard photons in intermediate energy heavy-ion collisions. The positive FF and negative v2v_2 of direct photons are illustrated and they seem to be anti-correlated to the corresponding free proton's flow.Comment: 7 pages, 4 figures; accepted by Physics Letters

    CUORE: The first bolometric experiment at the ton scale for the search for neutrino-less double beta decay

    Get PDF
    The Cryogenic Underground Observatory for Rare Events (CUORE) is the most massive bolometric experiment searching for neutrino-less double beta (0νββ) decay. The detector consists of an array of 988 TeO crystals (742 kg) arranged in a compact cylindrical structure of 19 towers. This paper will describe the CUORE experiment, including the cryostat, and present the detector performance during the first year of running. Additional detail will describe the effort made in improving the energy resolution in the Te 0νββ decay region of interest (ROI) and the suppression of backgrounds. A description of work to lower the energy threshold in order to give CUORE the sensitivity to search for other rare events, such as dark matter, will also be provided. 2 13

    Perspectives of lowering CUORE thresholds with Optimum Trigger

    Get PDF
    CUORE is a cryogenic experiment that focuses on the search of neutrinoless double beta decay in 130Te and it is located at the Gran Sasso National Laboratories. Its detector consists of 988 TeO2 crystals operating at a base temperature of ~10 mK. It is the first ton-scale bolometric experiment ever realized for this purpose. Thanks to its large target mass and ultra-low background, the CUORE detector is also suitable for the search of other rare phenomena. In particular the low energy part of the spectra is interesting for the detection of WIMP-nuclei scattering reactions. One of the most important requirements to perform these studies is represented by the achievement of a stable energy threshold lower than 10 keV. Here, the CUORE capability to accomplish this purpose using a low energy software trigger will be presented and described

    Search for 14.4 keV Solar Axions from M1 Transition of 57Fe with CUORE Crystals

    Get PDF
    We report the results of a search for axions from the 14.4 keV M1 transition from 57Fe in the core of the sun using the axio-electric effect in TeO2bolometers. The detectors are 5 × 5 × 5 cm3 crystals operated at about 10 mK in a facility used to test bolometers for the CUORE experiment at the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg⋅d of data was made using a newly developed low energy trigger which was optimized to reduce the energy threshold of the detector. An upper limit of 0.58 c⋅kg−1⋅d−1 is established at 95% C.L., which translates into lower bounds fA ≥ 3.12 × 105 GeV 95% C.L. (DFSZ model) and fA ≥ 2.41 × 104 GeV 95% C.L. (KSVZ model) on the Peccei-Quinn symmetry-breaking scale, for a value of S = 0.5 of the flavor-singlet axial vector matrix element. These bounds can be expressed in terms of axion masses as mA ≤ 19.2 eV and mA ≤ 250 eV at 95% C.L. in the DFSZ and KSVZ models respectively. Bounds are given also for the interval 0.35 ≤ S ≤ 0.55
    • …
    corecore