225 research outputs found
Blue carbon as a natural climate solution
Blue carbon ecosystems (BCEs), including mangrove forests, seagrass meadows and tidal marshes, store carbon and provide co-benefits such as coastal protection and fisheries enhancement. Blue carbon sequestration has therefore been suggested as a natural climate solution. In this Review, we examine the potential for BCEs to act as carbon sinks and the opportunities to protect or restore ecosystems for this function. Globally, BCEs are calculated to store \u3e 30,000 Tg C across ~185 million ha, with their conservation potentially avoiding emissions of 304 (141â466) Tg carbon dioxide equivalent (CO2e) per year. Potential BCE restoration has been estimated in the range of 0.2â3.2 million ha for tidal marshes, 8.3â25.4 million ha for seagrasses and 9â13 million ha for mangroves, which could draw down an additional 841 (621â1,064) Tg CO2e per year by 2030, collectively amounting to ~3% of global emissions (based on 2019 and 2020 global annual fossil fuel emissions). Mangrove protection and/or restoration could provide the greatest carbon-related benefits, but better understanding of other BCEs is needed. BCE destruction is unlikely to stop fully, and not all losses can be restored. However, engineering and planning for coastal protection offer opportunities for protection and restoration, especially through valuing co-benefits. BCE prioritization is potentially a cost-effective and scalable natural climate solution, but there are still barriers to overcome before blue carbon project adoption will become widespread
Spin-dynamics simulations of the triangular antiferromagnetic XY model
Using Monte Carlo and spin-dynamics methods, we have investigated the dynamic
behavior of the classical, antiferromagnetic XY model on a triangular lattice
with linear sizes . The temporal evolutions of spin configurations
were obtained by solving numerically the coupled equations of motion for each
spin using fourth-order Suzuki-Trotter decompositions of exponential operators.
From space- and time-displaced spin-spin correlation functions and their
space-time Fourier transforms we obtained the dynamic structure factor for momentum and frequency . Below
(Kosterlitz-Thouless transition), both the in-plane () and the
out-of-plane () components of exhibit very strong
and sharp spin-wave peaks. Well above , and
apparently display a central peak, and spin-wave signatures are still seen in
. In addition, we also observed an almost dispersionless domain-wall
peak at high below (Ising transition), where long-range order
appears in the staggered chirality. Above , the domain-wall peak
disappears for all . The lineshape of these peaks is captured reasonably
well by a Lorentzian form. Using a dynamic finite-size scaling theory, we
determined the dynamic critical exponent = 1.002(3). We found that our
results demonstrate the consistency of the dynamic finite-size scaling theory
for the characteristic frequeny and the dynamic structure factor
itself.Comment: 8 pages, RevTex, 10 figures, submitted to PR
Measurements of long-range near-side angular correlations in TeV proton-lead collisions in the forward region
Two-particle angular correlations are studied in proton-lead collisions at a
nucleon-nucleon centre-of-mass energy of TeV, collected
with the LHCb detector at the LHC. The analysis is based on data recorded in
two beam configurations, in which either the direction of the proton or that of
the lead ion is analysed. The correlations are measured in the laboratory
system as a function of relative pseudorapidity, , and relative
azimuthal angle, , for events in different classes of event
activity and for different bins of particle transverse momentum. In
high-activity events a long-range correlation on the near side, , is observed in the pseudorapidity range . This
measurement of long-range correlations on the near side in proton-lead
collisions extends previous observations into the forward region up to
. The correlation increases with growing event activity and is found
to be more pronounced in the direction of the lead beam. However, the
correlation in the direction of the lead and proton beams are found to be
compatible when comparing events with similar absolute activity in the
direction analysed.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm
Evidence for the strangeness-changing weak decay
Using a collision data sample corresponding to an integrated luminosity
of 3.0~fb, collected by the LHCb detector, we present the first search
for the strangeness-changing weak decay . No
hadron decay of this type has been seen before. A signal for this decay,
corresponding to a significance of 3.2 standard deviations, is reported. The
relative rate is measured to be
, where and
are the and fragmentation
fractions, and is the branching
fraction. Assuming is bounded between 0.1 and
0.3, the branching fraction would lie
in the range from to .Comment: 7 pages, 2 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
Study of the production of and hadrons in collisions and first measurement of the branching fraction
The product of the () differential production
cross-section and the branching fraction of the decay () is
measured as a function of the beauty hadron transverse momentum, ,
and rapidity, . The kinematic region of the measurements is and . The measurements use a data sample
corresponding to an integrated luminosity of collected by the
LHCb detector in collisions at centre-of-mass energies in 2011 and in 2012. Based on previous LHCb
results of the fragmentation fraction ratio, , the
branching fraction of the decay is
measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi
pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4},
\end{equation*} where the first uncertainty is statistical, the second is
systematic, the third is due to the uncertainty on the branching fraction of
the decay , and the
fourth is due to the knowledge of . The sum of the
asymmetries in the production and decay between and
is also measured as a function of and .
The previously published branching fraction of , relative to that of , is updated.
The branching fractions of are determined.Comment: 29 pages, 19figures. All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm
Key Factors Associated With Pulmonary Sequelae in the Follow-Up of Critically Ill COVID-19 Patients
Introduction: Critical COVID-19 survivors have a high risk of respiratory sequelae. Therefore, we aimed to identify key factors associated with altered lung function and CT scan abnormalities at a follow-up visit in a cohort of critical COVID-19 survivors. Methods: Multicenter ambispective observational study in 52 Spanish intensive care units. Up to 1327 PCR-confirmed critical COVID-19 patients had sociodemographic, anthropometric, comorbidity and lifestyle characteristics collected at hospital admission; clinical and biological parameters throughout hospital stay; and, lung function and CT scan at a follow-up visit. Results: The median [p25âp75] time from discharge to follow-up was 3.57 [2.77â4.92] months. Median age was 60 [53â67] years, 27.8% women. The mean (SD) percentage of predicted diffusing lung capacity for carbon monoxide (DLCO) at follow-up was 72.02 (18.33)% predicted, with 66% of patients having DLCO < 80% and 24% having DLCO < 60%. CT scan showed persistent pulmonary infiltrates, fibrotic lesions, and emphysema in 33%, 25% and 6% of patients, respectively. Key variables associated with DLCO < 60% were chronic lung disease (CLD) (OR: 1.86 (1.18â2.92)), duration of invasive mechanical ventilation (IMV) (OR: 1.56 (1.37â1.77)), age (OR [per-1-SD] (95%CI): 1.39 (1.18â1.63)), urea (OR: 1.16 (0.97â1.39)) and estimated glomerular filtration rate at ICU admission (OR: 0.88 (0.73â1.06)). Bacterial pneumonia (1.62 (1.11â2.35)) and duration of ventilation (NIMV (1.23 (1.06â1.42), IMV (1.21 (1.01â1.45)) and prone positioning (1.17 (0.98â1.39)) were associated with fibrotic lesions. Conclusion: Age and CLD, reflecting patientsâ baseline vulnerability, and markers of COVID-19 severity, such as duration of IMV and renal failure, were key factors associated with impaired DLCO and CT abnormalities
ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle
The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma a
- âŠ