32 research outputs found

    Measurement of charged particle multiplicities in pppp collisions at s=7{\sqrt{s} =7}TeV in the forward region

    Get PDF
    The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of s=7{\sqrt{s} =7}TeV in different intervals of pseudorapidity η\eta. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the η\eta ranges 2.5<η<2.0-2.5<\eta<-2.0 and 2.0<η<4.52.0<\eta<4.5. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of η\eta. In general, the models underestimate the charged particle production

    Observation of X(3872) production in pp collisions at √s=7TeV

    Get PDF
    Using 34.7 pb−1 of data collected with the LHCb detector, the inclusive production of the X(3872) meson in pp collisions at √s = 7 TeV is observed for the first time. Candidates are selected in the X(3872)→J/ψπ+π− decay mode, and used to measure σ(pp→X(3872)+anything)B(X(3872)→J/ψπ+π−) = 5.4 ±1.3 (stat)±0.8 (syst) nb, where σ(pp →X(3872) + anything) is the inclusive production cross section of X(3872) mesons with rapidity in the range 2.5–4.5 and transverse momentum in the range 5–20 GeV/c. In addition the masses of both the X(3872) and ψ(2S) mesons, reconstructed in the J/ψπ+π− final state, are measured to be mX(3872) = 3871.95± 0.48 (stat)±0.12 (syst) MeV/c2 and mψ(2S) = 3686.12±0.06 (stat) ±0.10 (syst) MeV/c2

    Measurement of relative branching fractions of B decays to ψ(2S)\psi(2S) and J/ψJ/\psi mesons

    Get PDF
    The relative rates of B-meson decays into J/ψJ/\psi and ψ(2S)\psi(2S) mesons are measured for the three decay modes in pp collisions recorded with the LHCb detector. The ratios of branching fractions (B\mathcal{B}) are measured to be B(B+ψ(2S)K+)B(B+J/ψK+)=0.594±0.006(stat)±0.016(syst)±0.015(Rψ)\frac{\mathcal{B}(B^+ \to \psi(2S) K^+)}{\mathcal{B}(B^+ \to J/\psi K^+)} = 0.594 \pm 0.006 (stat) \pm 0.016 (syst) \pm 0.015 (R_{\psi}), B(B0ψ(2S)K0)B(B0J/ψK0)=0.476±0.014(stat)±0.010(syst)±0.012(Rψ)\frac{\mathcal{B}(B^0 \to \psi(2S) K^{*0})}{\mathcal{B}(B^0 \to J/\psi K^{*0})} = 0.476 \pm 0.014 (stat) \pm 0.010 (syst) \pm 0.012\,(R_{\psi}), Bs0(Bs0ψ(2S)ϕ)B(Bs0J/ψϕ)=0.489±0.026(stat)±0.021(syst)±0.012(Rψ)\frac{\mathcal{B}^{0}_{s}(B^0_s \to \psi(2S)\phi)}{\mathcal{B}(B^0_s \to J/\psi\phi)} = 0.489 \pm 0.026 (stat) \pm 0.021 (syst) \pm 0.012\,(R_{\psi}) where the third uncertainty is from the ratio of the ψ(2S)\psi(2S) and J/ψJ/\psi branching fractions to μμ\mu\mu.Comment: 14 pages, 1 figur

    Measurement of prompt hadron production ratios in pppp collisions at s=\sqrt{s} = 0.9 and 7 TeV

    Get PDF
    The charged-particle production ratios pˉ/p\bar{p}/p, K/K+K^-/K^+, π/π+\pi^-/\pi^+, (p+pˉ)/(π++π)(p + \bar{p})/(\pi^+ + \pi^-), (K++K)/(π++π)(K^+ + K^-)/(\pi^+ + \pi^-) and (p+pˉ)/(K++K)(p + \bar{p})/(K^+ + K^-) are measured with the LHCb detector using 0.3nb10.3 {\rm nb^{-1}} of pppp collisions delivered by the LHC at s=0.9\sqrt{s} = 0.9 TeV and 1.8nb11.8 {\rm nb^{-1}} at s=7\sqrt{s} = 7 TeV. The measurements are performed as a function of transverse momentum pTp_{\rm T} and pseudorapidity η\eta. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio pˉ/p\bar{p}/p is also considered as a function of rapidity loss, Δyybeamy\Delta y \equiv y_{\rm beam} - y, and is used to constrain models of baryon transport.Comment: Incorrect entries in Table 2 corrected. No consequences for rest of pape

    Measurement of the forward energy flow in pp collisions at &#8730;<span style="text-decoration:overline">s</span>=7 TeV

    Get PDF
    The energy flow created in pp collisions at s√=7 TeV is studied within the pseudorapidity range 1.9&#60;η&#60;4.9 with data collected by the LHCb experiment. The measurements are performed for inclusive minimum-bias interactions, hard scattering processes and events with an enhanced or suppressed diffractive contribution. The results are compared to predictions given by Pythia-based and cosmic-ray event generators, which provide different models of soft hadronic interactions

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF
    Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with theFluka Monte Carlo programme

    Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb-1 of LHC proton-proton collision data recorded at √(s) = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET ∼ 10 GeV, and 0.3% at ET ∼ 1 TeV; for photons at ET ∼ 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/ψ → ee and radiative Z-boson decays

    Performance and calibration of quark/gluon-jet taggers using 140 fb−1 of pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using √s = 13 TeV proton–proton collision data with an integrated luminosity of 140 fb-1 collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points
    corecore