23 research outputs found

    The Jefferson Lab Frozen Spin Target

    Full text link
    A frozen spin polarized target, constructed at Jefferson Lab for use inside a large acceptance spectrometer, is described. The target has been utilized for photoproduction measurements with polarized tagged photons of both longitudinal and circular polarization. Protons in TEMPO-doped butanol were dynamically polarized to approximately 90% outside the spectrometer at 5 T and 200--300 mK. Photoproduction data were acquired with the target inside the spectrometer at a frozen-spin temperature of approximately 30 mK with the polarization maintained by a thin, superconducting coil installed inside the target cryostat. A 0.56 T solenoid was used for longitudinal target polarization and a 0.50 T dipole for transverse polarization. Spin-lattice relaxation times as high as 4000 hours were observed. We also report polarization results for deuterated propanediol doped with the trityl radical OX063.Comment: 11 pages, 12 figures, preprint submitted to Nuclear Instruments and Methods in Physics Research, Section

    First measurements of the double-polarization observables F, P, and H in ω photoproduction off transversely polarized protons in the N* resonance region

    Get PDF
    First measurements of double-polarization observables in ω photoproduction off the proton are presented using transverse target polarization and data from the CEBAF Large Acceptance Spectrometer (CLAS) FROST experiment at Jefferson Lab. The beam-target asymmetry F has been measured using circularly polarized, tagged photons in the energy range 1200–2700 MeV, and the beam-target asymmetries H and P have been measured using linearly polarized, tagged photons in the energy range 1200–2000 MeV. These measurements significantly increase the database on polarization observables. The results are included in two partial-wave analyses and reveal significant contributions from several nucleon (N∗) resonances. In particular, contributions from new N∗ resonances listed in the Review of Particle Properties are observed, which aid in reaching the goal of mapping out the nucleon resonance spectrum

    First measurement of the helicity asymmetry E in eta photoproduction on the proton

    Get PDF
    Results are presented for the first measurement of the double-polarization helicity asymmetry E for the η\eta photoproduction reaction γpηp\gamma p \rightarrow \eta p. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in Hall B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. As an initial application of these data, the results have been incorporated into the J\"ulich model to examine the case for the existence of a narrow NN^* resonance between 1.66 and 1.70 GeV. The addition of these data to the world database results in marked changes in the predictions for the E observable using that model. Further comparison with several theoretical approaches indicates these data will significantly enhance our understanding of nucleon resonances

    First measurement of the polarization observable E in the p→(γ→,π<sup>+</sup>)n reaction up to 2.25 GeV

    Get PDF
    First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction γpπ+n\vec \gamma \vec p \to \pi^+n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn-Gatchina, J\"ulich, and SAID groups.Comment: 6 pages, 3 figure

    Measurement of the Charge Exchange for N7+, O7+ Ions in Collision with Atomic H

    No full text
    The absolute total cross sections for the charge exchange between highly charged ions 15N7+, O7+, and atomic H have been measured with the ion-atom merged-beams apparatus at Oak Ridge National Laboratory. The collision energy range is from 1224 down to 2 eV u−1, which covers outflowing hot components of astrophysical charge exchange plasmas like stellar-wind and supernova remnants. Good agreement with the previous measurements and theory is found for the collision energies above 100 eV u−1, while below 100 eV u−1 limited agreement is achieved with the available calculations. These cross-section data are useful for modeling X-ray emission resulting from the charge exchange at the interface of hot plasma interacting with ambient neutral gas

    Comparison of simulation to absolute X-ray emission of CH plasma created with the Nike laser

    No full text
    The Nike laser group at the Naval Research Laboratory has an ongoing effort to improve and benchmark the radiation hydrodynamic simulations used to develop pellet designs for inertial confinement fusion. A new postprocessor, Virtual Spectro, has been added to the FAST code suite for detailed simulation of non-LTE spectra, including radiation transport effects and Stark line profile. This new combination enhances our ability to predict the absolute emission of soft x-rays. An absolutely calibrated transmission grating spectrometer and a high resolution grazing incidence spectrometer have been used to collect time integrated and time resolved spectra emitted by CH targets irradiated at laser intensities of 10TW/cm2\sim10\,{\rm TW/cm}^2. Comparison between these observations and simulations using Virtual Spectro demonstrates excellent agreement (within factor of 1.5\sim1.5) for the absolute emission
    corecore