248 research outputs found

    The Best Interest of the Patient

    Get PDF
    Vice President Michael Pence’s choice to not wear a mask while visiting Mayo Clinic on April 28, 2020, and Mayo Clinic’s decision to allow this to occur in what was known to be a very public event illustrates important opportunities and lessons for global public health, as well as health care system executive leadership and patient safety across health care systems

    Gauge-fixing, semiclassical approximation and potentials for graded Chern-Simons theories

    Get PDF
    We perform the Batalin-Vilkovisky analysis of gauge-fixing for graded Chern-Simons theories. Upon constructing an appropriate gauge-fixing fermion, we implement a Landau-type constraint, finding a simple form of the gauge-fixed action. This allows us to extract the associated Feynman rules taking into account the role of ghosts and antighosts. Our gauge-fixing procedure allows for zero-modes, hence is not limited to the acyclic case. We also discuss the semiclassical approximation and the effective potential for massless modes, thereby justifying some of our previous constructions in the Batalin-Vilkovisky approach.Comment: 46 pages, 4 figure

    Unification, KK-thresholds and the top Yukawa coupling in F-theory GUTs

    Full text link
    In a class of F-theory SU(5) GUTs the low energy chiral mass spectrum is obtained from rank one fermion mass textures with a hierarchical structure organised by U(1) symmetries embedded in the exceptional E_8 group. In these theories chiral fields reside on matter `curves' and the tree level masses are computed from integrals of overlapping wavefuctions of the particles at the triple intersection points. This calculation requires knowledge of the exact form of the wavefuctions. In this work we propose a way to obtain a reliable estimate of the various quantities which determine the strength of the Yukawa couplings. We use previous analysis of KK threshold effects to determine the (ratios of) heavy mass scales of the theory which are involved in the normalization of the wave functions. We consider similar effects from the chiral spectrum of these models and discuss possible constraints on the emerging matter content. In this approach, we find that the Yukawa couplings can be determined solely from the U(1) charges of the states in the `intersection' and the torsion which is a topological invariant quantity. We apply the results to a viable SU(5) model with minimal spectrum which satisfies all the constraints imposed by our analysis. We use renormalization group analysis to estimate the top and bottom masses and find that they are in agreement with the experimental values.Comment: 28 pages, 2 figure

    A semantical approach to equilibria and rationality

    Full text link
    Game theoretic equilibria are mathematical expressions of rationality. Rational agents are used to model not only humans and their software representatives, but also organisms, populations, species and genes, interacting with each other and with the environment. Rational behaviors are achieved not only through conscious reasoning, but also through spontaneous stabilization at equilibrium points. Formal theories of rationality are usually guided by informal intuitions, which are acquired by observing some concrete economic, biological, or network processes. Treating such processes as instances of computation, we reconstruct and refine some basic notions of equilibrium and rationality from the some basic structures of computation. It is, of course, well known that equilibria arise as fixed points; the point is that semantics of computation of fixed points seems to be providing novel methods, algebraic and coalgebraic, for reasoning about them.Comment: 18 pages; Proceedings of CALCO 200

    A geometric discretisation scheme applied to the Abelian Chern-Simons theory

    Get PDF
    We give a detailed general description of a recent geometrical discretisation scheme and illustrate, by explicit numerical calculation, the scheme's ability to capture topological features. The scheme is applied to the Abelian Chern-Simons theory and leads, after a necessary field doubling, to an expression for the discrete partition function in terms of untwisted Reidemeister torsion and of various triangulation dependent factors. The discrete partition function is evaluated computationally for various triangulations of S3S^3 and of lens spaces. The results confirm that the discretisation scheme is triangulation independent and coincides with the continuum partition functionComment: 27 pages, 5 figures, 6 tables. in late

    Mixing time of critical Ising model on trees is polynomial in the height

    Get PDF
    In the heat-bath Glauber dynamics for the Ising model on the lattice, physicists believe that the spectral gap of the continuous-time chain exhibits the following behavior. For some critical inverse-temperature βc\beta_c, the inverse-gap is bounded for β<βc\beta < \beta_c, polynomial in the surface area for β=βc\beta = \beta_c and exponential in it for β>βc\beta > \beta_c. This has been proved for Z2\Z^2 except at criticality. So far, the only underlying geometry where the critical behavior has been confirmed is the complete graph. Recently, the dynamics for the Ising model on a regular tree, also known as the Bethe lattice, has been intensively studied. The facts that the inverse-gap is bounded for ββc\beta \beta_c were established, where βc\beta_c is the critical spin-glass parameter, and the tree-height hh plays the role of the surface area. In this work, we complete the picture for the inverse-gap of the Ising model on the bb-ary tree, by showing that it is indeed polynomial in hh at criticality. The degree of our polynomial bound does not depend on bb, and furthermore, this result holds under any boundary condition. We also obtain analogous bounds for the mixing-time of the chain. In addition, we study the near critical behavior, and show that for β>βc\beta > \beta_c, the inverse-gap and mixing-time are both exp[Θ((ββc)h)]\exp[\Theta((\beta-\beta_c) h)].Comment: 53 pages; 3 figure

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    A viscoactive constitutive modeling framework with variational updates for the myocardium

    Full text link
    We present a constitutive modeling framework for contractile cardiac mechanics by formulating a single variational principle from which incremental stress-strain relations and kinetic rate equations for active contraction and relaxation can all be derived. The variational framework seamlessly incorporates the hyperelastic behavior of the relaxed and contracted tissue along with the rate - and length - dependent generation of contractile force. We describe a three-element, Hill-type model that unifies the active tension and active deformation approaches. As in the latter approach, we multiplicatively decompose the total deformation gradient into active and elastic parts, with the active deformation parametrizing the contractile Hill element. We adopt as internal variables the fiber, cross-fiber, and sheet normal stretch ratios. The kinetics of these internal variables are modeled via definition of a kinetic potential function derived from experimental force-velocity relations. Additionally, we account for dissipation during tissue deformation by adding a Newtonian viscous potential. To model the force activation, the kinetic equations are coupled with the calcium transient obtained from a cardiomyocyte electrophysiology model. We first analyze our model at the material point level using stress and strain versus time curves for different viscosity values. Subsequently, we couple our constitutive framework with the finite element method (FEM) and study the deformation of three-dimensional tissue slabs with varying cardiac myocyte orientation. Finally, we simulate the contraction and relaxation of an ellipsoidal left ventricular model and record common kinematic measures, such as ejection fraction, and myocardial tissue volume changes

    Measurement of the CP-Violating Asymmetry Amplitude sin2β\beta

    Get PDF
    We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes
    corecore