315 research outputs found

    Chemical separations by bubble-assisted interphase mass-transfer

    Get PDF
    We show that when a small amount of heat is added close to a liquid-vapor interface of a captive gas bubble in a microchannel, interphase mass-transfer through the bubble can occur in a controlled manner with only a slight change in the temperature of the fluid. We demonstrate that this method, which we refer to as bubble-assisted interphase mass-transfer (BAIM), can be applied to interphase chemical separations, e.g., simple distillation, without the need for high temperatures, vacuum, or active cooling. Although any source of localized heating could be used, we illustrate BAIM with an all-optical technique that makes use of the plasmon resonance in an array of nanoscale metal structures that are incorporated into the channel to produce localized heating of the fluid when illuminated by a stationary low-power laser. © 2008 American Chemical Society

    Heterogenous catalysis mediated by plasmon heating

    Get PDF
    We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO2, CO, and H2, are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles. © 2009 American Chemical Society

    Effects of arformoterol twice daily, tiotropium once daily, and their combination in patients with COPD

    Get PDF
    Current guidelines support using in combination more than one class of long-acting bronchodilator for COPD patients whose symptoms are not controlled by mono-therapy. This 2-week, multi-center (34 sites), randomized, modified-blind, parallel group study evaluated the efficacy and safety of concomitant treatment with nebulized arformoterol (the formoterol(R,R)-isomer) BID and tiotropium DPI QD. COPD patients (mean FEV(1) 1.37L, 45.4% predicted) were randomized to receive mono-therapy (either arformoterol 15microg BID [n=76] or tiotropium 18microg QD [n=80]), or combined therapy (sequential dosing of arformoterol 15microg BID and tiotropium 18microg QD [n=78]). Changes in pulmonary function, dyspnea, and rescue levalbuterol use were evaluated, as were safety outcomes. Mean FEV(1)AUC(0-24) (the primary endpoint) improved similarly from baseline for arformoterol (0.10L) and tiotropium (0.08L) treatment groups and greater for the combined therapy group (0.22L; all p-values <0.005). Peak FEV(1), peak FVC, 24-h trough FEV(1), and inspiratory capacity also improved similarly for the mono-therapies and greatest for the combined therapy. Dyspnea (mean transition dyspnea index) improved similarly for arformoterol (+2.3) and tiotropium (+1.8) and greatest with combined therapy (+3.1; p-values <0.05). Levalbuterol use decreased for all treatment groups (range -1.8 to -2.5 actuations/day). All treatments had similar frequency of adverse events. In this study, the combination of nebulized arformoterol 15microg BID plus tiotropium 18microg DPI QD was the most effective in improving pulmonary function and disease symptoms. Mono-therapy improvement with arformoterol or tiotropium was similar. All three treatments were well tolerated

    Management recommendations for the northern goshawk in the southwestern United States

    Get PDF
    Present forest conditions--loss of a herbaceous and shrubby understory, reductions in the amount of older forests, and increased areas of dense tree regeneration--reflect the extent of human influence on these forests. These changes may also be affecting goshawk populations. Information on goshawk nesting habitat and foraging behavior, and the food and habitats of selected goshawk prey, was therefore synthesized to develop a set of management objectives, desired forest conditions, and management recommendations. Key objectives of the guidelines are to provide (1) nesting, post-fledging, and foraging areas for goshawks, and (2) habitat to support abundant populations of 14 primary goshawk prey. Thinning trees in the understory, creating small openings in the forest, and prescribed fires should help produce and maintain the desired forest conditions. Other habitat elements critical for maintaining both goshawk and prey populations include abundant snags and large downed logs, woody debris, interspersion of different tree sizes across the landscape, and the majority of a goshawk's home range in older-aged forests. These guidelines should also benefit forest health, soil productivity, and the habitats of other old-growth dependent plants and animals

    The long-term survival chances of young massive star clusters

    Full text link
    We review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with violent galaxy interactions. We address the key question as to whether at least some of these YMCs can be considered proto-globular clusters (GCs), in which case these would be expected to evolve into counterparts of the ubiquitous old GCs believed to be among the oldest galactic building blocks. In the absence of significant external perturbations, the key factor determining a cluster's long-term survival chances is the shape of its stellar initial mass function (IMF). It is, however, not straightforward to assess the IMF shape in unresolved extragalactic YMCs. We discuss in detail the promise of using high-resolution spectroscopy to make progress towards this goal, as well as the numerous pitfalls associated with this approach. We also discuss the latest progress in worldwide efforts to better understand the evolution of entire cluster systems, the disruption processes they are affected by, and whether we can use recently gained insights to determine the nature of at least some of the YMCs observed in extragalactic starbursts as proto-GCs. We conclude that there is an increasing body of evidence that GC formation appears to be continuing until today; their long-term evolution crucially depends on their environmental conditions, however.Comment: invited refereed review article; ChJA&A, in press; 33 pages LaTeX (2 postscript figures); requires chjaa.cls style fil

    Dense Stellar Populations: Initial Conditions

    Full text link
    This chapter is based on four lectures given at the Cambridge N-body school "Cambody". The material covered includes the IMF, the 6D structure of dense clusters, residual gas expulsion and the initial binary population. It is aimed at those needing to initialise stellar populations for a variety of purposes (N-body experiments, stellar population synthesis).Comment: 85 pages. To appear in The Cambridge N-body Lectures, Sverre Aarseth, Christopher Tout, Rosemary Mardling (eds), Lecture Notes in Physics Series, Springer Verla

    A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum

    Get PDF
    A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community

    Back to the future : using long-term observational and paleo-proxy reconstructions to improve model projections of Antarctic climate

    Get PDF
    Quantitative estimates of future Antarctic climate change are derived from numerical global climate models. Evaluation of the reliability of climate model projections involves many lines of evidence on past performance combined with knowledge of the processes that need to be represented. Routine model evaluation is mainly based on the modern observational period, which started with the establishment of a network of Antarctic weather stations in 1957/58. This period is too short to evaluate many fundamental aspects of the Antarctic and Southern Ocean climate system, such as decadal-to-century time-scale climate variability and trends. To help address this gap, we present a new evaluation of potential ways in which long-term observational and paleo-proxy reconstructions may be used, with a particular focus on improving projections. A wide range of data sources and time periods is included, ranging from ship observations of the early 20th century to ice core records spanning hundreds to hundreds of thousands of years to sediment records dating back 34 million years. We conclude that paleo-proxy records and long-term observational datasets are an underused resource in terms of strategies for improving Antarctic climate projections for the 21st century and beyond. We identify priorities and suggest next steps to addressing this
    corecore