783 research outputs found
Self-consistent non-Markovian theory of a quantum state evolution for quantum information processing
It is shown that the operator sum representation for non-Markovian dynamics
and the Lindblad master equation in Markovian limit can be derived from a
formal solution to quantum Liouville equation for a qubit system in the
presence of decoherence processes self-consistently. Our formulation is the
first principle theory based on projection-operator formalism to obtain an
exact reduced density operator in time-convolutionless form starting from the
quantum Liouville equation for a noisy quantum computer. The advantage of our
approach is that it is general enough to describe a realistic quantum computer
in the presence of decoherence provided details of the Hamiltonians are known.Comment: 5page
Nuclear level density and thermal properties of Sn from neutron evaporation
The nuclear level density of Sn has been measured in an excitation
energy range of 2 - 9 MeV using the experimental neutron evaporation
spectra from the In()Sn reaction. The experimental level
densities were compared with the microscopic Hartree-Fock BCS (HFBCS),
Hartree-Fock-Bogoliubov plus combinatorial (HFB+C), and an exact pairing plus
independent particle model (EP+IPM) calculations. It is observed that the
EP+IPM provides the most accurate description of the experimental data. The
thermal properties (entropy and temperature) of Sn have been
investigated from the measured level densities. The experimental temperature
profile as well as the calculated heat capacity show distinct signatures of a
transition from the strongly-paired nucleonic phase to the weakly paired one in
this nucleus.Comment: This article has been submitted to European Journal of Physics A for
publicatio
Evaluation of a novel antibody to define histone 3.3 G34R mutant brain tumours
Missense somatic mutations affecting histone H3.1 and H3.3 proteins are now accepted as the hallmark of paediatric diffuse intrinsic pontine gliomas (DIPG), non-brain stem paediatric high grade gliomas (pHGG) as well as a subset of adult glioblastoma multiforme (GBM). Different mutations give rise to one of three amino acid substitutions at two critical positions within the histone tails, K27M, G34R/V. Several studies have highlighted gene expression and epigenetic changes associated with histone H3 mutations; however their precise roles in tumourigenesis remain incompletely understood. Determining how such amino acid substitutions in a protein affect its properties can be challenging because of difficulties in detecting and tracking mutant proteins within cells and tissues. Here we describe a strategy for the generation of antibodies to discriminate G34R and G34V mutant histone H3 proteins from their wild-type counterparts. Antibodies were validated by western blotting and immunocytochemistry, using recombinant H3.3 proteins and paediatric GBM cell lines. The H3-G34R antibody demonstrated a high degree of selectivity towards its target sequence. Accordingly, immunostaining on a cohort of 22 formalin-fixed paraffin embedded tumours with a previously known H3.3 G34R mutation status, detected successfully the corresponding mutant protein in 11/11 G34R cases. Since there was a high concordance between genotype and immunohistochemical analysis of G34R mutant tumour samples, we analysed a series of tissue microarrays (TMAs) to assess the specificity of the antibody in a range of paediatric brain tumours, and noted immunoreactivity in 2/634 cases. Importantly, we describe the generation and validation of highly specific antibodies for G34 mutations. Overall our work adds to an extremely valuable portfolio of antibodies, not only for histopathologic detection of tumour-associated mutant histone sequences, but also facilitating the study of spatial/anatomical aspects of tumour formation and the identification of downstream targets and pathways in malignant glioma progression
Resonance fluorescence in a band gap material: Direct numerical simulation of non-Markovian evolution
A numerical method of calculating the non-Markovian evolution of a driven
atom radiating into a structured continuum is developed. The formal solution
for the atomic reduced density matrix is written as a Markovian algorithm by
introducing a set of additional, virtual density matrices which follow, to the
level of approximation of the algorithm, all the possible trajectories of the
photons in the electromagnetic field. The technique is perturbative in the
sense that more virtual density matrices are required as the product of the
effective memory time and the effective coupling strength become larger. The
number of density matrices required is given by where is the number
of timesteps per memory time. The technique is applied to the problem of a
driven two-level atom radiating close to a photonic band gap and the
steady-state correlation function of the atom is calculated.Comment: 14 pages, 9 figure
Non-Markovian Decay of a Three Level Cascade Atom in a Structured Reservoir
We present a formalism that enables the study of the non-Markovian dynamics
of a three-level ladder system in a single structured reservoir. The
three-level system is strongly coupled to a bath of reservoir modes and two
quantum excitations of the reservoir are expected. We show that the dynamics
only depends on reservoir structure functions, which are products of the mode
density with the coupling constant squared. This result may enable pseudomode
theory to treat multiple excitations of a structured reservoir. The treatment
uses Laplace transforms and an elimination of variables to obtain a formal
solution. This can be evaluated numerically (with the help of a numerical
inverse Laplace transform) and an example is given. We also compare this result
with the case where the two transitions are coupled to two separate structured
reservoirs (where the example case is also analytically solvable)
Theory of Pseudomodes in Quantum Optical Processes
This paper deals with non-Markovian behaviour in atomic systems coupled to a
structured reservoir of quantum EM field modes, with particular relevance to
atoms interacting with the field in high Q cavities or photonic band gap
materials. In cases such as the former, we show that the pseudo mode theory for
single quantum reservoir excitations can be obtained by applying the Fano
diagonalisation method to a system in which the atomic transitions are coupled
to a discrete set of (cavity) quasimodes, which in turn are coupled to a
continuum set of (external) quasimodes with slowly varying coupling constants
and continuum mode density. Each pseudomode can be identified with a discrete
quasimode, which gives structure to the actual reservoir of true modes via the
expressions for the equivalent atom-true mode coupling constants. The quasimode
theory enables cases of multiple excitation of the reservoir to now be treated
via Markovian master equations for the atom-discrete quasimode system.
Applications of the theory to one, two and many discrete quasimodes are made.
For a simple photonic band gap model, where the reservoir structure is
associated with the true mode density rather than the coupling constants, the
single quantum excitation case appears to be equivalent to a case with two
discrete quasimodes
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
Optimal squeezing, pure states, and amplification of squeezing in resonance fluorescence
It is shown that 100% squeezed output can be produced in the resonance
fluorescence from a coherently driven two-level atom interacting with a
squeezed vacuum. This is only possible for squeezed input, and is
associated with a pure atomic state, i.e., a completely polarized state. The
quadrature for which optimal squeezing occurs depends on the squeezing phase
the Rabi frequency and the atomic detuning . Pure
states are described for arbitrary not just or as in
previous work. For small values of there may be a greater degree of
squeezing in the output field than the input - i.e., we have squeezing
amplification.Comment: 6 pages & 7 figures, Submitted to Phys. Rev.
Next-generation sequencing identifies rare variants associated with Noonan syndrome
Noonan syndrome (NS) is a relatively common genetic disorder, characterized by typical facies, short stature, developmental delay, and cardiac abnormalities. Known causative genes account for 70-80% of clinically diagnosed NS patients, but the genetic basis for the remaining 20-30% of cases is unknown. We performed next-generation sequencing on germ-line DNA from 27 NS patients lacking a mutation in the known NS genes. We identified gain-of-function alleles in Ras-like without CAAX 1 (RIT1) and mitogen-activated protein kinase kinase 1 (MAP2K1) and previously unseen loss-of-function variants in RAS p21 protein activator 2 (RASA2) that are likely to cause NS in these patients. Expression of the mutant RASA2, MAP2K1, or RIT1 alleles in heterologous cells increased RAS-ERK pathway activation, supporting a causative role in NS pathogenesis. Two patients had more than one disease-associated variant. Moreover, the diagnosis of an individual initially thought to have NS was revised to neurofibromatosis type 1 based on an NF1 nonsense mutation detected in this patient. Another patient harbored a missense mutation in NF1 that resulted in decreased protein stability and impaired ability to suppress RAS-ERK activation; however, this patient continues to exhibit a NS-like phenotype. In addition, a nonsense mutation in RPS6KA3 was found in one patient initially diagnosed with NS whose diagnosis was later revised to Coffin-Lowry syndrome. Finally, we identified other potential candidates for new NS genes, as well as potential carrier alleles for unrelated syndromes. Taken together, our data suggest that next-generation sequencing can provide a useful adjunct to RASopathy diagnosis and emphasize that the standard clinical categories for RASopathies might not be adequate to describe all patients
- …