235 research outputs found

    Translating model simulators to analysis models

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-78743-3_6Proceedings of 11th International Conference, FASE 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.We present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language by means of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets.Work sponsored by the Spanish Ministry of Science and Education, project MOSAIC (TSI2005-08225-C07-06

    Gastric Helicobacter infection induces iron deficiency in the INS-GAS mouse

    Get PDF
    There is increasing evidence from clinical and population studies for a role of H. pylori infection in the aetiology of iron deficiency. Rodent models of Helicobacter infection are helpful for investigating any causal links and mechanisms of iron deficiency in the host. The aim of this study was to investigate the effects of gastric Helicobacter infection on iron deficiency and host iron metabolism/transport gene expression in hypergastrinemic INS-GAS mice. INS-GAS mice were infected with Helicobacter felis for 3, 6 and 9 months. At post mortem, blood was taken for assessment of iron status and gastric mucosa for pathology, immunohistology and analysis of gene expression. Chronic Helicobacter infection of INS- GAS mice resulted in decreased serum iron, transferrin saturation and hypoferritinemia and increased Total iron binding capacity (TIBC). Decreased serum iron concentrations were associated with a concomitant reduction in the number of parietal cells, strengthening the association between hypochlorhydria and gastric Helicobacter-induced iron deficiency. Infection with H. felis for nine months was associated with decreased gastric expression of iron metabolism regulators hepcidin, Bmp4 and Bmp6 but increased expression of Ferroportin 1, the iron efflux protein, iron absorption genes such as Divalent metal transporter 1, Transferrin receptor 1 and also Lcn2 a siderophore-binding protein. The INS-GAS mouse is therefore a useful model for studying Helicobacter-induced iron deficiency. Furthermore, the marked changes in expression of gastric iron transporters following Helicobacter infection may be relevant to the more rapid development of carcinogenesis in the Helicobacter infected INS-GAS model

    Netazepide inhibits expression of Pappalysin 2 in type-1 gastric neuroendocrine tumors

    Get PDF
    Background & Aims: In patients with autoimmune atrophic gastritis and achlorhydria, hypergastrinemia is associated with the development of type 1 gastric neuroendocrine tumors (gNETs). Twelve months of treatment with netazepide (YF476), an antagonist of the cholecystokinin B receptor (CCKBR or CCK2R), eradicated some type 1 gNETs in patients. We investigated the mechanisms by which netazepide induced gNET regression using gene expression profiling. Methods: We obtained serum samples and gastric corpus biopsy specimens from 8 patients with hypergastrinemia and type 1 gNETs enrolled in a phase 2 trial of netazepide. Control samples were obtained from 10 patients without gastric cancer. We used amplified and biotinylated sense-strand DNA targets from total RNA and Affymetrix (Thermofisher Scientific, UK) Human Gene 2.0 ST microarrays to identify differentially expressed genes in stomach tissues from patients with type 1 gNETs before, during, and after netazepide treatment. Findings were validated in a human AGS GR gastric adenocarcinoma cell line that stably expresses human CCK2R, primary mouse gastroids, transgenic hypergastrinemic INS-GAS mice, and patient samples. Results: Levels of pappalysin 2 (PAPPA2) messenger RNA were reduced significantly in gNET tissues from patients receiving netazepide therapy compared with tissues collected before therapy. PAPPA2 is a metalloproteinase that increases the bioavailability of insulin-like growth factor (IGF) by cleaving IGF binding proteins (IGFBPs). PAPPA2 expression was increased in the gastric corpus of patients with type 1 gNETs, and immunohistochemistry showed localization in the same vicinity as CCK2R-expressing enterochromaffin-like cells. Up-regulation of PAPPA2 also was found in the stomachs of INS-GAS mice. Gastrin increased PAPPA2 expression with time and in a dose-dependent manner in gastric AGS GR cells and mouse gastroids by activating CCK2R. Knockdown of PAPPA2 in AGS GR cells with small interfering RNAs significantly decreased their migratory response and tissue remodeling in response to gastrin. Gastrin altered the expression and cleavage of IGFBP3 and IGFBP5. Conclusions: In an analysis of human gNETS and mice, we found that gastrin up-regulates the expression of gastric PAPPA2. Increased PAPPA2 alters IGF bioavailability, cell migration, and tissue remodeling, which are involved in type 1 gNET development. These effects are inhibited by netazepide

    Tomographic Probability Representation for States of Charge moving in Varying Field

    Full text link
    The coherent and Fock states of a charge moving in varying homogeneous magnetic field are studied in the tomographic probability representation of quantum mechanics. The states are expressed in terms of quantum tomograms. The coherent states tomograms are shown to be described by normal distributions with varying dispersions and means. The Fock state tomograms are given in the form of probability distributions described by multivariable Hermite polynomials with time-dependent arguments.Comment: 12 pages, submitted to "Optics and Spectroscopy

    The Role of Proteasome Beta Subunits in Gastrin-Mediated Transcription of Plasminogen Activator Inhibitor-2 and Regenerating Protein1

    Get PDF
    The hormone gastrin physiologically regulates gastric acid secretion and also contributes to maintaining gastric epithelial architecture by regulating expression of genes such as plasminogen activator inhibitor 2 (PAI-2) and regenerating protein 1(Reg1). Here we examine the role of proteasome subunit PSMB1 in the transcriptional regulation of PAI-2 and Reg1 by gastrin, and its subcellular distribution during gastrin stimulation. We used the gastric cancer cell line AGS, permanently transfected with the CCK2 receptor (AGS-GR) to study gastrin stimulated expression of PAI-2 and Reg1 reporter constructs when PSMB1 was knocked down by siRNA. Binding of PSMB1 to the PAI-2 and Reg1 promoters was assessed by chromatin immunoprecipitation (ChIP) assay. Subcellular distribution of PSMB1 was determined by immunocytochemistry and Western Blot. Gastrin robustly increased expression of PAI-2 and Reg1 in AGS-GR cells, but when PSMB1 was knocked down the responses were dramatically reduced. In ChIP assays, following immunoprecipitation of chromatin with a PSMB1 antibody there was a substantial enrichment of DNA from the gastrin responsive regions of the PAI-2 and Reg1 promoters compared with chromatin precipitated with control IgG. In AGS-GR cells stimulated with gastrin there was a significant increase in the ratio of nuclear:cytoplasmic PSMB1 over the same timescale as recruitment of PSMB1 to the PAI-2 and Reg1 promoters seen in ChIP assays. We conclude that PSMB1 is part of the transcriptional machinery required for gastrin stimulated expression of PAI-2 and Reg1, and that its change in subcellular distribution in response to gastrin is consistent with this role

    The Effects of Puerarin on Rat Ventricular Myocytes and the Potential Mechanism

    Get PDF
    Puerarin, a known isoflavone, is commonly found as a Chinese herb medicine. It is widely used in China to treat cardiac diseases such as angina, cardiac infarction and arrhythmia. However, its cardioprotective mechanism remains unclear. In this study, puerarin significantly prolonged ventricular action potential duration (APD) with a dosage dependent manner in the micromolar range on isolated rat ventricular myocytes. However, submicromolar puerarin had no effect on resting membrane potential (RMP), action potential amplitude (APA) and maximal velocity of depolarization (Vmax) of action potential. Only above the concentration of 10 mM, puerarin exhibited more aggressive effect on action potential, and shifted RMP to the positive direction. Millimolar concentrations of puerarin significantly inhibited inward rectified K+ channels in a dosage dependent manner, and exhibited bigger effects upon Kir2.1 vs Kir2.3 in transfected HEK293 cells. As low as micromolar range concentrations of puerarin significantly inhibited Kv7.1 and IKs. These inhibitory effects may due to the direct inhibition of puerarin upon channels not via the PKA-dependent pathway. These results provided direct preclinical evidence that puerarin prolonged APD via its inhibitory effect upon Kv7.1 and IKs, contributing to a better understanding the mechanism of puerarin cardioprotection in the treatment of cardiovascular diseases

    Sudden cardiac death athletes: a systematic review

    Get PDF
    Previous events evidence that sudden cardiac death (SCD) in athletes is still a reality and it keeps challenging cardiologists. Considering the importance of SCD in athletes and the requisite for an update of this matter, we endeavored to describe SCD in athletes. The Medline (via PubMed) and SciELO databases were searched using the subject keywords "sudden death, athletes and mortality". The incidence of SCD is expected at one case for each 200,000 young athletes per year. Overall it is resulted of complex dealings of factors such as arrhythmogenic substrate, regulator and triggers factors. In great part of deaths caused by heart disease in athletes younger than 35 years old investigations evidence cardiac congenital abnormalities. Athletes above 35 years old possibly die due to impairments of coronary heart disease, frequently caused by atherosclerosis. Myocardial ischemia and myocardial infarction are responsible for the most cases of SCD above this age (80%). Pre-participatory athletes' evaluation helps to recognize situations that may put the athlete's life in risk including cardiovascular diseases. In summary, cardiologic examinations of athletes' pre-competition routine is an important way to minimize the risk of SCD
    corecore