320 research outputs found

    Constrained Query Answering

    Get PDF
    Traditional answering methods evaluate queries only against positive and definite knowledge expressed by means of facts and deduction rules. They do not make use of negative, disjunctive or existential information. Negative or indefinite knowledge is however often available in knowledge base systems, either as design requirements, or as observed properties. Such knowledge can serve to rule out unproductive subexpressions during query answering. In this article, we propose an approach for constraining any conventional query answering procedure with general, possibly negative or indefinite formulas, so as to discard impossible cases and to avoid redundant evaluations. This approach does not impose additional conditions on the positive and definite knowledge, nor does it assume any particular semantics for negation. It adopts that of the conventional query answering procedure it constrains. This is achieved by relying on meta-interpretation for specifying the constraining process. The soundness, completeness, and termination of the underlying query answering procedure are not compromised. Constrained query answering can be applied for answering queries more efficiently as well as for generating more informative, intensional answers

    Actes communicatifs Ă  effets institutionnels

    Get PDF
    Cet article présente un cadre logique général pour représenter des actes de langage ayant des effets institutionnels. Il s'appuie sur les concepts de la théorie des actes de langage et complète la formalisation adoptée par l'organisme FIPA pour standardiser son langage de communication inter-agent. La caractéristique fondamentale de notre approche est que la force illocutoire de tous les actes de langage ainsi définis est déclarative. Le langage formel proposé pour exprimer le contenu propositionnel offre un grand pouvoir expressif et permet de représenter une grande variété d'actes de langage tels que : donner un pouvoir, nommer, ordonner, déclarer, etc. A general logical framework is presented to represent speech acts that have institutional effects. It is based on the concepts of the Speech Act Theory and takes the form of the Agent Communication Language standardized by the FIPA organization. The most important feature of our approach is that the illocutionary force of all of these speech acts is declarative. The formal language that is proposed to express the propositional content has a large expressive power and makes it possible to represent a large variety of speech acts such as : to empower, to appoint, to order, to declare, etc

    Reasoning about the safety of information: from logical formalization to operational definition

    Get PDF
    We assume that safety of information stored in a database depends on the reliability of the agents who have performed the insertions in the database. We present a logic S to represent information safety, and to derive answers to standard queries and to safety queries. The design of this logic is based on signaling act theory. Two strong simplifications lead to a logic S" with two modalities to represent explicit beliefs and implicit beliefs. Then, we present an operational view of S" in terms of First Order Logic, with meta predicates, which is implemented by a Prolog meta program. lt is proved that answers derived in S" and computed by the meta program are identical. This property gives a clea.r meaning to computed answers. Content areas: Epistemological foundations, Theorem proving, Logic programming, Multi-agent systems

    Automated reasoning in metabolic networks with inhibition

    Get PDF
    International audienceThe use of artificial intelligence to represent and reason about metabolic networks has been widely investigated due to the complexity of their imbrication. Its main goal is to determine the catalytic role of genomes and their interference in the process. This paper presents a logical model for metabolic pathways capable of describing both positive and negative reactions (activations and inhibitions) based on a fragment of first order logic. We also present a translation procedure that aims to transform first order formulas into quantifier free formulas, creating an efficient automated deduction method allowing us to predict results by deduction and infer reactions and proteins states by abductive reasoning

    A framework for modelling Molecular Interaction Maps

    Full text link
    Metabolic networks, formed by a series of metabolic pathways, are made of intracellular and extracellular reactions that determine the biochemical properties of a cell, and by a set of interactions that guide and regulate the activity of these reactions. Most of these pathways are formed by an intricate and complex network of chain reactions, and can be represented in a human readable form using graphs which describe the cell cycle checkpoint pathways. This paper proposes a method to represent Molecular Interaction Maps (graphical representations of complex metabolic networks) in Linear Temporal Logic. The logical representation of such networks allows one to reason about them, in order to check, for instance, whether a graph satisfies a given property Ď•\phi, as well as to find out which initial conditons would guarantee Ď•\phi, or else how can the the graph be updated in order to satisfy Ď•\phi. Both the translation and resolution methods have been implemented in a tool capable of addressing such questions thanks to a reduction to propositional logic which allows exploiting classical SAT solvers.Comment: 31 pages, 12 figure

    Query Evaluation in Deductive Databases

    Get PDF
    It is desirable to answer queries posed to deductive databases by computing fixpoints because such computations are directly amenable to set-oriented fact processing. However, the classical fixpoint procedures based on bottom-up processing — the naive and semi-naive methods — are rather primitive and often inefficient. In this article, we rely on bottom-up meta-interpretation for formalizing a new fixpoint procedure that performs a different kind of reasoning: We specify a top-down query answering method, which we call the Backward Fixpoint Procedure. Then, we reconsider query evaluation methods for recursive databases. First, we show that the methods based on rewriting on the one hand, and the methods based on resolution on the other hand, implement the Backward Fixpoint Procedure. Second, we interpret the rewritings of the Alexander and Magic Set methods as specializations of the Backward Fixpoint Procedure. Finally, we argue that such a rewriting is also needed in a database context for implementing efficiently the resolution-based methods. Thus, the methods based on rewriting and the methods based on resolution implement the same top-down evaluation of the original database rules by means of auxiliary rules processed bottom-up

    Metatheory of actions: beyond consistency

    Get PDF
    Consistency check has been the only criterion for theory evaluation in logic-based approaches to reasoning about actions. This work goes beyond that and contributes to the metatheory of actions by investigating what other properties a good domain description in reasoning about actions should have. We state some metatheoretical postulates concerning this sore spot. When all postulates are satisfied together we have a modular action theory. Besides being easier to understand and more elaboration tolerant in McCarthy's sense, modular theories have interesting properties. We point out the problems that arise when the postulates about modularity are violated and propose algorithmic checks that can help the designer of an action theory to overcome them

    Regional ion channel gene expression heterogeneity and ventricular fibrillation dynamics in human hearts

    Get PDF
    RATIONALE: Structural differences between ventricular regions may not be the sole determinant of local ventricular fibrillation (VF) dynamics and molecular remodeling may play a role. OBJECTIVES: To define regional ion channel expression in myopathic hearts compared to normal hearts, and correlate expression to regional VF dynamics. METHODS AND RESULTS: High throughput real-time RT-PCR was used to quantify the expression patterns of 84 ion-channel, calcium cycling, connexin and related gene transcripts from sites in the LV, septum, and RV in 8 patients undergoing transplantation. An additional eight non-diseased donor human hearts served as controls. To relate local ion channel expression change to VF dynamics localized VF mapping was performed on the explanted myopathic hearts right adjacent to sampled regions. Compared to non-diseased ventricles, significant differences (p<0.05) were identified in the expression of 23 genes in the myopathic LV and 32 genes in the myopathic RV. Within the myopathic hearts significant regional (LV vs septum vs RV) expression differences were observed for 13 subunits: Nav1.1, Cx43, Ca3.1, Cavalpha2delta2, Cavbeta2, HCN2, Na/K ATPase-1, CASQ1, CASQ2, RYR2, Kir2.3, Kir3.4, SUR2 (p<0.05). In a subset of genes we demonstrated differences in protein expression between control and myopathic hearts, which were concordant with the mRNA expression profiles for these genes. Variability in the expression of Cx43, hERG, Na(+)/K(+) ATPase ss1 and Kir2.1 correlated to variability in local VF dynamics (p<0.001). To better understand the contribution of multiple ion channel changes on VF frequency, simulations of a human myocyte model were conducted. These simulations demonstrated the complex nature by which VF dynamics are regulated when multi-channel changes are occurring simultaneously, compared to known linear relationships. CONCLUSIONS: Ion channel expression profile in myopathic human hearts is significantly altered compared to normal hearts. Multi-channel ion changes influence VF dynamic in a complex manner not predicted by known single channel linear relationships
    • …
    corecore