25 research outputs found

    Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny

    Full text link
    Fire may have been a crucial component in the evolution of the Cape flora of South Africa, a region characterized by outstanding levels of species richness and endemism. However, there is, to date, no critical assessment of the age of the modern fire regime in this biome. Here, we exploit the presence of two obligate post-fire flowering clades in the orchid genus Disa, in conjunction with a robust, well-sampled and dated molecular phylogeny, to estimate the age by which fire must have been present. Our results indicate that summer drought (winter rainfall), the fire regime and the fynbos vegetation are several million years older than currently suggested. Summer drought and the fynbos vegetation are estimated to date back to at least the Early Miocene (ca 19.5 Ma). The current fire regime may have been established during a period of global cooling that followed the mid-Miocene Climatic Optimum (ca 15 Ma), which led to the expansion of open habitats and increased aridification. The first appearance of Disa species in the grassland biome, as well as in the subalpine habitat, is in striking agreement with reliable geological and palaeontological evidence of the age of these ecosystems, thus corroborating the efficacy of our methods. These results change our understanding of the historical mechanisms underlying botanical evolution in southern Africa, and confirm the potential of using molecular phylogenies to date events for which other information is lacking or inconclusive

    Genomic Fingerprints of Palaeogeographic History: The Tempo and Mode of Rift Tectonics Across Tropical Africa Has Shaped the Diversification of the Killifish Genus Nothobranchius (Teleostei: Cyprinodontiformes)

    Get PDF
    This paper reports a phylogeny of the African killifishes (Genus Nothobranchius, Order Cyprinodontiformes) informed by five genetic markers (three nuclear, two mitochondrial) of 80 taxa (seven undescribed and 73 of the 92 recognized species). These short-lived annual fishes occupy seasonally wet habitats in central and eastern Africa, and their distribution coincides largely with the East African Rift System (EARS). The fossil dates of sister clades used to constrain a chronometric tree of all sampled Nothobranchius recovered the origin of the genus at ~13.27 Mya. It was followed by the radiations of six principal clades through the Neogene. An ancestral area estimation tested competing biogeographical hypotheses to constrain the ancestral origin of the genus to the Nilo-Sudan Ecoregion, which seeded a mid-Miocene dispersal event into the Coastal ecoregion, followed closely (~10 Mya) by dispersals southward across the Mozambique coastal plain into the Limpopo Ecoregion. Extending westwards across the Tanzanian plateau, a pulse of radiations through the Pliocene were associated with dispersals and fragmentation of wetlands across the Kalahari and Uganda Ecoregions. We interpret this congruence of drainage rearrangements with dispersals and cladogenic events of Nothobranchius to reflect congruent responses to recurrent uplift and rifting. The coevolution of these freshwater fishes and wetlands is attributed to ultimate control by tectonics, as the EARS extended southwards during the Neogene. Geobiological consilience of the combined evidence supports a tectonic hypothesis for the evolution of Nothobranchius

    Galaxy and Mass Assembly (GAMA): Mid-infrared properties as tracers of galaxy environment

    Get PDF
    We investigate how different mid-infrared (mid-IR) properties of galaxies trace the environment in which the galaxies are located. For this purpose, we first study the dependence of galaxy clustering on the absolute magnitude at 3.4 μ\mum and redshift. Then, we look into the environmental dependence of mid-IR luminosities and the galaxy properties derived from these luminosities. We also explore how various infrared galaxy luminosity selections influence the galaxy clustering measurements. We use a set of W1 (3.4 μ\mum) absolute magnitude (MW1M_\text{W1}) selected samples from the Galaxy and Mass Assembly (GAMA) survey matched with mid-IR properties from the Wide-field Infrared Survey Explorer (WISE) in the redshift range 0.07z<0.430.07 \leq z < 0.43. We compute the galaxy two-point correlation function (2pCF) and compare the clustering lengths between subsamples binned in MW1M_\text{W1} and in redshift. We also measure the marked correlation functions (MCFs) using the luminosities in the WISE W1 to W4 (3.4 to 22 μ\mum) bands as marks. Additionally, we compare the measurements of MCFs with different estimates of stellar mass and star formation rate used as marks. Finally, we check how different selections applied to the sample affect the clustering measurements. We show strong clustering dependence on the W1 absolute magnitude: galaxies brighter in the W1 band are more strongly clustered than their fainter counterparts. We also observe a lack of significant redshift dependence of clustering in the redshift range 0.07z<0.430.07 \leq z < 0.43. We show that although W1 and W2 bands are direct indicators of stellar mass, a galaxy sample selected based on W1 or W2 bands does not perfectly show the clustering behaviour of a stellar mass selected sample. Similar is the case with the proxy relation between W3 and W4 bands and star formation rate.Comment: 19 pages, 12 figures, accepted in A&

    The biodiversity hotspot as evolutionary hot-bed : spectacular radiation of Erica in the Cape Floristic Region

    Get PDF
    CITATION: Pirie, M. D., et al. 2016. The biodiversity hotspot as evolutionary hot-bed: spectacular radiation of Erica in the Cape Floristic Region.BMC Evolutionary Biology, 16:190, doi:10.1186/s12862-016-0764-3.The original publication is available at https://bmcevolbiol.biomedcentral.comBackground: The disproportionate species richness of the world’s biodiversity hotspots could be explained by low extinction (the evolutionary “museum”) and/or high speciation (the “hot-bed”) models. We test these models using the largest of the species rich plant groups that characterise the botanically diverse Cape Floristic Region (CFR): the genus Erica L. We generate a novel phylogenetic hypothesis informed by nuclear and plastid DNA sequences of c. 60 % of the c. 800 Erica species (of which 690 are endemic to the CFR), and use this to estimate clade ages (using RELTIME; BEAST), net diversification rates (GEIGER), and shifts in rates of diversification in different areas (BAMM; MuSSE). Results: The diversity of Erica species in the CFR is the result of a single radiation within the last c. 15 million years. Compared to ancestral lineages in the Palearctic, the rate of speciation accelerated across Africa and Madagascar, with a further burst of speciation within the CFR that also exceeds the net diversification rates of other Cape clades. Conclusions: Erica exemplifies the “hotbed” model of assemblage through recent speciation, implying that with the advent of the modern Cape a multitude of new niches opened and were successively occupied through local species diversification.https://bmcevolbiol.biomedcentral.com/articles/10.1186/s12862-016-0764-3Publisher's versio

    Extinction Risk and Diversification Are Linked in a Plant Biodiversity Hotspot

    Get PDF
    Plant extinction risks in the Cape, South Africa differ from those for vertebrates worldwide, with young and fast-evolving plant lineages marching towards extinction at the fastest rate, but independently of human effects

    4MOST: Project overview and information for the First Call for Proposals

    Get PDF
    We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R=λ/Δλ6500R = \lambda/\Delta\lambda \sim 6500), and 812 fibres transferring light to the high-resolution spectrograph (R20000R \sim 20\,000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations

    The immune carrier properties of acid-treated Salmonella Minnesota R595 bacteria

    No full text
    Thesis (Ph. D. Agric.) -- University of Stellenbosch, 1988.Full text to be digitised and attached to bibliographic record

    A novel radioimmunoassay for the thyroid hormone T3

    No full text
    Thesis (M.Sc.) -- University of Stellenbosch, 1982.Full text to be digitised and attached to bibliographic record

    A NEW SPECIES OF STREPTOCARPUS

    No full text
    corecore