5,987 research outputs found

    Photon deflection and precession of the periastron in terms of spatial gravitational fields

    Full text link
    We show that a Maxwell-like system of equations for spatial gravitational fields g\bf g and B\bf B (latter being the analogy of a magnetic field), modified to include an extra term for the B\bf B field in the expression for force, leads to the correct values for the photon deflection angle and for the precession of the periastron

    Observation of the Decay B^-→D_s^((*)+)K^-ℓ^-ν̅ _ℓ

    Get PDF
    We report the observation of the decay B^- → D_s^((*)+)K^-ℓ^-ν̅ _ℓ based on 342  fb^(-1) of data collected at the Υ(4S) resonance with the BABAR detector at the PEP-II e^+e^- storage rings at SLAC. A simultaneous fit to three D_s^+ decay chains is performed to extract the signal yield from measurements of the squared missing mass in the B meson decay. We observe the decay B^- → D_s^((*)+)K^-ℓ^-ν̅ _ℓ with a significance greater than 5 standard deviations (including systematic uncertainties) and measure its branching fraction to be B(B^- → D_s^((*)+)K^-ℓ^-ν̅ _ℓ)=[6.13_(-1.03)^(+1.04)(stat)±0.43(syst)±0.51(B(D_s))]×10^(-4), where the last error reflects the limited knowledge of the D_s branching fractions

    The ongoing pursuit of R Coronae Borealis stars: the ASAS-3 survey strikes again

    Get PDF
    CONTEXT: R Coronae Borealis stars( RCBs) are rare, hydrogen-deficient, carbon rich super giant variable stars that are likely the evolved merger products of pairs of CO and He white dwarfs. Only 55 RCB stars have been found in our galaxy and their distribution on the sky is weighted heavily by microlensing survey field positions. A less biased wide-area survey would enable us to test competing evolutionary scenarios, understand the population or populations that produce RCBs, and constrain their formation rate. AIMS: The ASAS-3 survey monitored the sky south of declination +28deg between 2000 and 2010 to a limiting magnitude of V = 14. We searched ASAS-3 for RCB variables using several different methods to ensure that the probability of RCB detection was as high as possible and to reduce selection biases based on luminosity, temperature, dust production activity and shell brightness. METHODS: Candidates whose light curves were visually inspected were pre-selected based on their infrared (IR) excesses due to warm dust in their circumstellar shells using the WISE and/or 2MASS catalogues. Criteria on light curve variability were also applied when necessary to minimise the number of objects. Initially, we searched for RCB stars among the ASAS-3 ACVS1.1 variable star catalogue, then among the entire ASAS-3 south source catalogue, and finally directly interrogated the light curve database for objects that were not catalogued in either of those. We then acquired spectra of 104 stars to determine their real nature using the SSO/WiFeS spectrograph. RESULTS: We report 21 newly discovered RCB stars and 2 new DY Per stars. Two previously suspected RCB candidates were also spectroscopically confirmed. Our methods allowed us to extend our detection efficiency to fainter magnitudes that would not have been easily accessible to discovery techniques based onlight curve variability. The overall detection efficiencyis about 90% for RCBs with maximum light brighter than V ∼13. CONCLUSIONS: With these new discoveries, 76 RCBs are now known in our Galaxy and 22 in the Magellanic Clouds. This growing sample is of great value to constrain the peculiar and disparate atmosphere composition of RCBs. Most importantly, we show that the spatial distribution and apparent magnitudes of Galactic RCB stars is consistent with RCBs being part of the Galactic bulge population.Department of HE and Training approved lis

    On the Reported Death of the MACHO Era

    Get PDF
    We present radial velocity measurements of four wide halo binary candidates from the sample in Chaname & Gould (2004; CG04) which, to date, is the only sample containing a large number of such candidates. The four candidates that we have observed have projected separations >0.1 pc, and include the two widest binaries from the sample, with separations of 0.45 and 1.1 pc. We confirm that three of the four CG04 candidates are genuine, including the one with the largest separation. The fourth candidate, however, is spurious at the 5-sigma level. In the light of these measurements we re-examine the implications for MACHO models of the Galactic halo. Our analysis casts doubt on what MACHO constraints can be drawn from the existing sample of wide halo binaries.Comment: 6 Pages, 4 Figures, Accepted for MNRAS Letter

    Gravitomagnetism in teleparallel gravity

    Full text link
    The assumption that matter charges and currents could generate fields, which are called, by analogy with electromagnetism, gravitoeletric and gravitomagnetic fields, dates from the origins of General Relativity (GR). On the other hand, the Teleparallel Equivalent of GR (TEGR), as a gauge theory, seems to be the ideal scenario to define these fields, based on the gauge field strength components. The purpose of the present work is to investigate the nature of the gravitational electric and magnetic fields in the context of the TEGR, where the tetrad formalism behind it seems to be more appropriated to deal with phenomena related to observers. As our main results, we have obtained, for the first time, the exact expressions for the gravito-electromagnetic fields for the Schwarzschild solution that in the linear approximation become the usual expected ones. To improve our understanding about these fields, we have also studied the geometry produced by a spherical rotating shell in slow motion and weak field regime. Again, the expressions obtained are in complete agreement with those of electromagnetism.Comment: 25 pages. Submitted to International Journal of Modern Physics D. Version 2: some new discussions, references adde

    A Spectral Classification System for Hydrogen-deficient Carbon Stars

    Full text link
    Stellar spectral classification, and especially the Yerkes system, has been highly useful in the study of stars. While there is a currently accepted classification system for carbon stars, the subset of Hydrogen-deficient Carbon (HdC) stars has not been well described by such a system, due in part to their rarity and their variability. Here we present a new system for the classification of HdCs based on their spectra, which is made wholly on their observable appearance. We use a combination of dimensionality reduction and clustering algorithms with human classification to create such a system. We classify over half of the known sample of HdC stars using this, and roughly calibrate the temperatures of each class using their colors. Additionally, we express trends in the occurrence of certain spectral peculiarities such as the presence of Hydrogen and Lithium lines. We also present three previously unpublished spectra, and report the discovery of three new Galactic dustless HdC (dLHdC) stars and additionally discuss one especially unique star that appears to border between the hottest HdCs and the coolest Extreme Helium (EHe) stars.Comment: 30 pages, 18 figures, submitted to MNRA

    First detection of dust clouds around R CrB variable stars

    Get PDF
    From VLT/NACO diffraction-limited images of RY~Sgr, we report the first direct detection of heterogeneities in the circumstellar envelope of a R Coronae Borealis variable star. Several bright and very large dust clouds are seen in various directions at several hundred stellar radii from RY Sgr, revealing high activity for the ejection of stellar material by R CrB variables. These observations do support the current interpretation that optically thick dust clouds are formed around the surface of this type of variable stars and, when passing between the star and the observer, produce the huge and sudden declines characterizing these objects in visible light. This is the first direct confirmation of a scenario proposed about 70 years ago.Comment: Published in Astronomy and Astrophysics (A&A 428,L13-L16 (2004)

    A single low-energy, iron-poor supernova as the source of metals in the star SMSS J 031300.36-670839.3

    Get PDF
    The element abundance ratios of four low-mass stars with extremely low metallicities indicate that the gas out of which the stars formed was enriched in each case by at most a few, and potentially only one low-energy, supernova. Such supernovae yield large quantities of light elements such as carbon but very little iron. The dominance of low-energy supernovae is surprising, because it has been expected that the first stars were extremely massive, and that they disintegrated in pair-instability explosions that would rapidly enrich galaxies in iron. What has remained unclear is the yield of iron from the first supernovae, because hitherto no star is unambiguously interpreted as encapsulating the yield of a single supernova. Here we report the optical spectrum of SMSS J031300.36- 670839.3, which shows no evidence of iron (with an upper limit of 10^-7.1 times solar abundance). Based on a comparison of its abundance pattern with those of models, we conclude that the star was seeded with material from a single supernova with an original mass of ~60 Mo (and that the supernova left behind a black hole). Taken together with the previously mentioned low-metallicity stars, we conclude that low-energy supernovae were common in the early Universe, and that such supernovae yield light element enrichment with insignificant iron. Reduced stellar feedback both chemically and mechanically from low-energy supernovae would have enabled first-generation stars to form over an extended period. We speculate that such stars may perhaps have had an important role in the epoch of cosmic reionization and the chemical evolution of early galaxies.Comment: 28 pages, 6 figures, Natur

    The EROS2 search for microlensing events towards the spiral arms: the complete seven season results

    Get PDF
    The EROS-2 project has been designed to search for microlensing events towards any dense stellar field. The densest parts of the Galactic spiral arms have been monitored to maximize the microlensing signal expected from the stars of the Galactic disk and bulge. 12.9 million stars have been monitored during 7 seasons towards 4 directions in the Galactic plane, away from the Galactic center. A total of 27 microlensing event candidates have been found. Estimates of the optical depths from the 22 best events are provided. A first order interpretation shows that simple Galactic models with a standard disk and an elongated bulge are in agreement with our observations. We find that the average microlensing optical depth towards the complete EROS-cataloged stars of the spiral arms is τˉ=0.51±.13×106\bar{\tau} =0.51\pm .13\times 10^{-6}, a number that is stable when the selection criteria are moderately varied. As the EROS catalog is almost complete up to IC=18.5I_C=18.5, the optical depth estimated for the sub-sample of bright target stars with IC<18.5I_C<18.5 (τˉ=0.39±>.11×106\bar{\tau}=0.39\pm >.11\times 10^{-6}) is easier to interpret. The set of microlensing events that we have observed is consistent with a simple Galactic model. A more precise interpretation would require either a better knowledge of the distance distribution of the target stars, or a simulation based on a Galactic model. For this purpose, we define and discuss the concept of optical depth for a given catalog or for a limiting magnitude.Comment: 22 pages submitted to Astronomy & Astrophysic
    corecore