4,217 research outputs found

    Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere

    Get PDF
    An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell

    Theoretical Problems in High Resolution Solar Physics, 2

    Get PDF
    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented

    Complexing additives to reduce the immiscible phase formed in the hybrid ZnBr2 flow battery

    Get PDF
    The zinc-bromine redox flow battery (RFB) is one of a very few commercially viable RFB energy storage system capable of integration with intermittent renewable energy sources to deliver improved energy management. However, due to the volatility of the electrogenerated bromine and potential for its crossover from positive to negative electrolytes, this system requires the use of quaternary ammonium complexes (N-methyl-N-ethylpyrrolidinium, (MEP)) to capture this bromine. This produces an immiscible phase with the Br2 which requires a complex network of pipes, pumps and automated controls to ensure access to the electroactive material during discharge. In this work, the use of novel quaternary ammonium complexes to capture the electrogenerated bromine but to keep it in the aqueous phase is examined. Three compounds, 1-(carboxymethyl) pyridine-1-ium, 1-(2-carboxymethyl)-1-methylmorpholin-1-ium and 1-(2-carboxymethyl)-1-methylpyrrolidin-1-ium, were found to successfully reduce the volume of the immiscible phase formed on complexing with the polybromide (Brx-) whilst displaying similar enthalpy of vaporisation values as that of MEP. Electrochemical analysis also revealed that these compounds did not impact on the electrode kinetics of the Br-/Brx- reaction indicating that the resulting surface film formed with these compounds behaved as a chemically modified electrode, in contrast to the surface film formed with MEP

    Catalysing scale-up of maternal and newborn health innovations in Ethiopia

    Get PDF
    Scaling-up the innovation across a large geographical area as part of the Community Based Newborn Care package produced challenges, yet there have also been positive and enabling factors in Ethiopia. IDEAS wanted to understand what helps and what hinders the scale-up of community-based maternal and newborn health (MNH) innovations, both within and beyond implementation partner areas, and how scale-up can be catalysed. IDEAS and its partners carried out a case study of an MNH innovation in Ethiopia with its roots in the Community Based Interventions for Newborns in Ethiopia (COMBINE) project which enables Health Extension Workers (HEWs) to administer antibiotics to manage neonatal sepsis at community level. This was evaluated through a randomised controlled trial. The innovation was facilitated by Save the Children USA, through Saving Newborn Lives (SNL), and was initially implemented by HEWs and the Health Development Army in 19 districts ('woredas') of Ethiopia. From late 2013, the innovation was being scaled-up to 92 woredas as one of nine components of Phase One of the Ethiopian Government’s Community Based Newborn Care (CBNC) package. This summary presents evidence from the study and identifies both enablers and barriers to scale up and key actions needed to catalyse scale up

    Synthesis of hetero-bifunctional, end-capped oligo-EDOT derivatives

    Get PDF
    Conjugated oligomers of 3,4-ethylenedioxythiophene (EDOT) are attractive materials for tissue engineering applications, and as model systems for studying the properties of the widely used polymer PEDOT. We report here the facile synthesis of a series of keto-acid end-capped oligo-EDOT derivatives (n = 2-7) through a combination of a glyoxylation end capping strategy and iterative direct arylation chain extension. Importantly, these structures not only represent the longest oligo-EDOTs reported, but are also bench stable in contrast to previous reports on such oligomers. The constructs reported here can undergo subsequent derivatization for integration into higher order architectures, such as those required for tissue engineering applications. The synthesis of hetero-bifunctional constructs, as well as those containing mixed monomer units is also reported, allowing further complexity to be installed in a controlled manner. Finally, we describe the optical and electrochemical properties of these oligomers and demonstrate the importance of the keto-acid in determining their characteristics

    N-heterocyclic germylenes: structural characterisation of some heavy analogues of the ubiquitous N-heterocyclic carbenes

    Get PDF
    The X-ray crystal structures of three N-heterocyclic germylenes (NHGes) have been elucidated including the previously unknown 1,3-bis(2,6-dimethylphenyl)diazagermol-2-ylidene (1). In addition, the X-ray crystal structures of the previously synthesised 1,3-bis(2,4,6-trimethylphenyl)diazagermol-2-ylidene (2) and 1,3-bis(2,6-diisopropylphenyl)diazagermol-2-ylidene (3) are also reported. The discrete molecular structures of compounds 1 to 3 are comparable, with Ge-N bond lengths in the range 1.835-1.875 Å, while the N-Ge-N bond angles range between 83.6 and 85.2°. Compound 2 was compared to the analogous N-heterocyclic carbene species, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes). The major geometrical difference observed, as expected, was the bond angle around the divalent group 14 atom. The N-Ge-N bond angle was 83.6° for compound 2 versus the N-C-N bond angle of 101.4° for IMes. The Sn equivalent of (1), 1,3-bis(2,6-dimethylphenyl)diazastannol-2-ylidene (4), has also been synthesised and its crystal structure is reported here. In order to test their suitability as ligands, compounds 1 to 3 were reacted with a wide range of transition metal complexes. No NHGes containing metal complexes were observed. In all cases the NHGe either degraded or gave no reaction

    On the theory of coronal heating mechanisms

    Get PDF
    Theoretical models describing solar coronal heating mechanisms are reviewed in some detail. The requirements of chromospheric and coronal heating are discussed in the context of the fundamental constraints encountered in modelling the outer solar atmosphere. Heating by acoustic processes in the 'nonmagnetic' parts of the atmosphere is examined with particular emphasis on the shock wave theory. Also discussed are theories of heating by electrodynamic processes in the magnetic regions of the corona, either magnetohydrodynamic waves or current heating in the regions with large electric current densities (flare type heating). Problems associated with each of the models are addressed

    Enhanced hydrogen storage in Ni/Ce composite oxides

    Get PDF
    The properties of dried (but not calcined) coprecipitated nickel ceria systems have been investigated in terms of their hydrogen emission characteristics following activation in hydrogen. XRD and BET data obtained on the powders show similarities to calcined ceria but it is likely that the majority of the material produced by the coprecipitation process is largely of an amorphous nature. XPS data indicate very little nickel is present on the outermost surface of the particles. Nevertheless, the thermal analytical techniques (TGA, DSC and TPD-MS) indicate that the hydrogen has access to the catalyst present and the nickel is able to generate hydrogen species capable of interacting with the support. Both unactivated and activated materials show two hydrogen emission features, viz. low temperature and high temperature emissions (LTE and HTE, respectively) over the temperature range 50 and 500 °C. A clear effect of hydrogen interaction with the material is that the activated sample not only emits much more hydrogen than the corresponding unactivated one but also at lower temperatures. H2 dissociation occurs on the reduced catalyst surface and the spillover mechanism transfers this active hydrogen into the ceria, possibly via the formation and migration of OH− species. The amount of hydrogen obtained (0.24 wt%) is 10× higher than those observed for calcined materials and would suggest that the amorphous phase plays a critical role in this process. The affiliated emissions of CO and CO2 with that of the HTE hydrogen (and consumption of water) strongly suggests a proportion of the hydrogen emission at this point arises from the water gas shift type reaction. It has not been possible from the present data to delineate between the various hydrogen storage mechanisms reported for ceria

    Particle acceleration in tangential discontinuities by lower hybrid waves

    Get PDF
    We consider the role that the lower-hybrid wave turbulence plays in providing the necessary resistivity at collisionless reconnection sights. The mechanism for generating the waves is considered to be the lower-hybrid drift instability. We find that the level of the wave amplitude is sufficient enough to heat and accelerate both electrons and ions
    corecore