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HIGHLIGHTS

A keto-acid end-capping strategy

has been used to create stable

oligo-EDOTs

Oligomers can be synthesized in a

facile manner via iterative direct

arylation

Hetero-bifunctional and mixed-

monomer constructs can be

controllably synthesized

The keto-acid end group

determines oligomer optical and

electrochemical properties
The synthesis and characterization of a series of keto-acid end-capped conjugated

oligomers (n = 2–7) based around the monomer EDOT is reported. The use of

direct arylation chain extension allows the synthesis of stable structures, which

represent the longest reported EDOT oligomers to date with tunable properties

based around the versatile end-capping group and monomer composition. These

constructs can undergo subsequent derivatization, allowing them to be integrated

into functional materials, such as those required for tissue engineering

applications.
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The Bigger Picture

The production of materials that

can aid the repair, regrowth, or

replacement of damaged tissue is

a key challenge in tissue

engineering. In this context,

conjugated polymers have been

proposed as attractive materials

for the engineering of

electroactive tissues such as the

heart. Although there has been

much progress in the field, the use

of conjugated polymers is still

hindered by their high

heterogeneity, stiffness, poor

solubility, and lack of chemical
SUMMARY

Conjugated oligomers of 3,4-ethylenedioxythiophene (EDOT) are attractive

materials for tissue engineering applications and as model systems for studying

the properties of the widely used polymer poly(3,4-ethylenedioxythiophene).

We report here the facile synthesis of a series of keto-acid end-capped oligo-

EDOT derivatives (n = 2–7) through a combination of a glyoxylation end-capping

strategy and iterative direct arylation chain extension. Importantly, these struc-

tures not only represent the longest oligo-EDOTs reported but are also bench

stable, in contrast to previous reports on such oligomers. The constructs re-

ported here can undergo subsequent derivatization for integration into

higher-order architectures, such as those required for tissue engineering appli-

cations. The synthesis of hetero-bifunctional constructs, as well as those con-

taining mixed-monomer units, is also reported, allowing further complexity to

be installed in a controlled manner. Finally, we describe the optical and electro-

chemical properties of these oligomers and demonstrate the importance of the

keto-acid in determining their characteristics.
functionality. Therefore, there is a

pressing need to produce new

routes to create constructs such as

those reported here, which offer

homogeneity, stability, ease of

synthesis, and most importantly,

flexibility of design. This versatility

allows the incorporation of

conjugated structures into the

higher-order biomaterial

architectures required for tissue

engineering, as well as tunable

solubility and material properties.

It is anticipated that this report will

open the door to an exciting new

chapter in the use of EDOT in

biology.
INTRODUCTION

Conjugated polymers (CPs) are promising materials for tissue engineering applica-

tions.1–4 However, further developments are required in order to allow their full

potential to be realized in the biomedical field. Although initial investigations

have shown CPs to be able to modulate cellular growth,5 migration,6 and differenti-

ation,7,8 as well as protein adhesion and conformation,9 difficulties remain as a

consequence of their poor material characteristics, difficult processing, and lack of

biodegradability.1,2,10 Further, the production of constructs bearing reactive

functionalities for integration into more complex scaffold architectures remains

challenging.2

In order to address these issues, there is increasing interest in the use of oligomers

rather than polymeric systems. Although oligomers are often more synthetically

complex,11 they offer the benefits of a defined molecular structure, improved solu-

bility, tunability, and additional chemical functionality.2,12 Oligomers can also act as

mono-disperse model systems for studying the electronic and optical properties of

the parent polymer, for which such investigations can be hindered.13

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a particularly attractive material for tis-

sue engineering because of its electrical and chemical stability and high conductivity

when doped with polymeric ionomers such as polystyrene sulfonate.14,15 Although

the synthesis of thiophene-based oligomers has been widely reported,11,16–19 those

of EDOT (1; Scheme 1) have generated comparatively little interest, largely as a
Chem 2, 125–138, January 12, 2017 ª 2017 The Author(s). Published by Elsevier Inc.
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Figure 1. Previous EDOT End Caps and the Concept of This Report

(A) Previous reports of the synthesis of EDOT oligomers.

(B) Keto-acid-capped oligomers presented in this work. These oligomers were synthesized by

direct arylation.
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consequence of the poor oxidative stability and low solubility of the oligomers.20,21

Mesityl,22 phenyl,21 n-hexyl,23 and trimethylsilyl24 capping groups have all been re-

ported. However, longer oligomers were found to be unstable in solution, very

poorly soluble, and difficult to purify, limiting their utility. Indeed, there remains

only a single report on the synthesis of a pentameric species, but no synthetic details

were reported24 (Figure 1A). Furthermore, the end caps utilized offer no opportu-

nities for further chemical derivatization and subsequent incorporation into more

complex structures.

Here, we report the facile synthesis and characterization of bench-stable oligo-EDOT

derivatives, up to n = 7, produced via a glyoxylation keto-acid end-capping strategy

and iterative C–H activation chemistry. Importantly, this allows the production of

hetero-bifunctional constructs with a wide range of functional handles for further

modification (Figure 1B). These motifs allow additional integration into more

challenging substrates, such as those required for tissue engineering applications.

RESULTS AND DISCUSSION

Oligomer Synthesis

Our initial designs were inspired by reports of thiophene glyoxylation with oxalyl

chloride.25 We reasoned that the intermediate glyoxylyl chloride 2 could be

reacted in situ with a range of nucleophiles to generate a-functionalized EDOT

derivatives (Scheme 1). Importantly, the choice of nucleophile would have little influ-

ence on aromatic stability, allowing for a range of diverse constructs to be produced.

After treatment of EDOT with 1 equiv of oxalyl chloride, the intermediate chloride 2

reacted smoothly with piperidine to generate the tertiary keto-amide 3 (Scheme 1A;

Figures S6 and S7) in good yield. Subsequent bromination with N-bromosuccini-

mide yielded the di-functional monomer 4 on a multi-gram scale (Figures S8 and

S9).22

A range of functionalized monomers could be produced by this method, including

secondary amines (5), hindered tertiary amines (6), esters (7, 8, and 9), and mono-

mers bearing functional groups for further modifications (Scheme 1, route A; Figures

S10–S19, S73, S74, S91, S92, S99, S100, and S129–S132). In addition, hydrolysis of
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Scheme 1. EDOT Glyoxylation and Functionalization

(A) Treatment of EDOT with oxalyl chloride and subsequent treatment with the desired nucleophile generates functional end-capped derivatives, which

can then undergo bromination (route A). Alternatively, amide or ester coupling can be undertaken from a common intermediate 10 to give the desired

monomers (route B).

(B) Functionalized brominated monomers synthesized.
brominated-EDOT methyl ester 7 and subsequent amide or ester coupling allowed

the synthesis of a range of di-functional monomers from a common intermediate 10

(Scheme 1, route B; Figures S20 and S21). Thus, monomers containing orthogonal

reactive groups for further conjugation, such as alkynes (11), alkenes (12), azides

(13), and protected alcohols (14), thiols (15), and amines (16), could all be produced

in good yields in a simple fashion (Figures S22–S37, S125–S128, and S133–S150).26

Next, we investigated the chain extension of brominated monomer 4 to form dimer

19. The most popular strategies for undertaking such reactions utilize Kumada,27

Negishi,28 or Stille29 couplings. However, problems such as poor functional-group

tolerance, monomer instability, and high reagent toxicity result in significant limita-

tions, particularly for use in biological applications.22,30,31 As such, we chose to

investigate the use of direct arylation, which has emerged in recent years as a power-

ful tool for constructing conjugated systems.32,33 Pleasingly, 4 was found to be

partially converted to 19 in the presence of 1.5 equiv of EDOT 1 inN,N-dimethylfor-

mamide (DMF) at 130�C for 1 hr (Scheme 2A; Figures S38 and S39). Importantly, the

reaction was catalyzed by a readily available combination of Pd(OAc)2, pivalic acid,

and potassium carbonate, thus negating the need for expensive or air-sensitive cat-

alysts and ligands or the use of specialist techniques.34

Investigating the reaction further, we found yields to be increased significantly

through the use of 4 equiv of EDOT, the excess of which could be readily re-isolated

through column chromatography. At lower loadings, a significant amount of the
Chem 2, 125–138, January 12, 2017 127
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Scheme 2. Synthesis of Piperidine End-Capped Homo-bifunctional EDOT Oligomers

(A) Chain extension of mono-functional (n = 1–3) piperidine-capped oligomers.

(B) Convergent coupling to generate bifunctional piperidine end-capped constructs (n = 2–7).
symmetrical di-capped trimer 20 was produced as a result of further reaction of 19

with 4 (Figures S40 and S41). Although small amounts of this side product were still

produced at higher EDOT loadings, yields were significantly lowered, and separa-

tion was readily achieved. Further iterations of bromination and direct arylation

allowed the production of brominated dimer 21 and trimer 22 on a gram scale,

both of which were found to be bench stable (Figures S42–S45). Bromination to

form brominated trimer 23 was also possible, although its low solubility and stability

prevented characterization and required its immediate use once prepared, as dis-

cussed later.

With these mono-capped building blocks in hand, we investigated the synthesis of

di-capped oligomers (Scheme 2B). Heating a mixture of brominated and non-bromi-

nated monomers 4 and 3 (1.1 equiv) under the same conditions required for chain

extension cleanly produced di-capped dimer 24 (Figures S46 and S47). Similarly,

trimer 20 was produced from 4 and dimer 19. Alternatively, 20 could be produced

from the reaction of 2 equiv of either monomer 3 or brominated monomer 4 with

2,5-dibromo-EDOT 25 or EDOT 1, respectively, in an optimized version of the pre-

viously discussed chain-extension side reaction.

By suitable choice of starting materials, di-capped oligomers (n = 2–5; 24, 20, 26,

and 27) were all readily produced and easily isolated by column chromatography

(Figures S48–S50). Extending the scope further to the use of brominated trimer

23, used immediately without purification, allowed the synthesis of hexamer 28,

whereas coupling of trimer 22 with 2,5-dibromo-EDOT 25 allowed the synthesis of

heptamer 29, the first time the synthesis of EDOT oligomers of such lengths has
128 Chem 2, 125–138, January 12, 2017



been reported (Figures S51 and S52). Oligomers up to n = 6 were found to be bench

and air stable and therefore could be easily handled, purified, and analyzed; no

change in structure was observed by UV-Vis or 1H-NMR spectroscopy after 2 months

of storage at room temperature. Heptamer 29 was produced with reduced purity

(�80% as judged by 1H NMR) but retained stability. Although oligomers of n = 2–

5 were also found to be stable in solution, after long periods in chlorinated solvents

(>2 weeks), a broadened UV-Vis absorption indicated that hexamer 28 and hep-

tamer 29 had undergone partial degradation.

Oligomer solubility was found to decrease with increasing chain length, and aggre-

gation in solution became significant at longer lengths. However, it remained high

enough to allow manipulation in solution and the use of typical synthetic techniques

such as phase extraction and column chromatography. Oligomers of n = 2–5 were

soluble at concentrations of >20 mM in dichloromethane (DCM), and hexamer 28

was soluble at concentrations of >5 mM, whereas heptamer 29 could be solubilized

at concentrations up to 0.5 mM. It is important to note that solubility is strongly influ-

enced by the choice of end group and can be readily improved by the introduction of

a flexible solubilizing linker to the functional group of interest, as discussed later.

Finally, we analyzed oligomers 20 and 26 by inductively coupled plasma mass spec-

trometry (ICP-MS) to determine the levels of residual palladium present. As for other

heavy metals, palladium contamination in pharmaceuticals and biomedical devices

is tightly regulated because of the potential for toxic side effects. Palladium contam-

ination was found to be at a low level of 7.4 G 0.5 ppm for trimer 20 and 1.2 G 0.5

ppm for tetramer 26. Although it is difficult to make a direct comparison between a

substrate intended for applications in tissue engineering and an active pharmaceu-

tical ingredient (API), it is useful to note that these low levels of contamination are

below the 10 ppm limit set by the International Council on Harmonisation of Tech-

nical Requirements for Registration of Pharmaceuticals for Human Use and the US

Pharmacopeia for acceptable levels of palladium in APIs.35 Furthermore, because

no extensive effort was taken to remove palladium from the samples, it is likely

that these levels could be reduced further. For example, the use of palladium chela-

tors during purification or the use of heterogeneous catalysts would be expected to

lead to a significant reduction in contamination in any structures intended for biolog-

ical applications.36–38

Although the ability to create symmetrical oligo-EDOTs with non-functional end

groups is a useful tool for modeling the properties of PEDOT, the true utility of

the method described above for the synthesis of di-piperidine-capped oligomers

is in the synthesis of hetero-bifunctional constructs, which can be selectively derivat-

ized at both ends, allowing their integration into more complex architectures. To

demonstrate this, we first synthesized a series of unsymmetrical oligomers capped

with a piperidine motif at one terminus and diisopropylamine at the other (see

Scheme S1). Coupling differently terminated oligomers as described above pro-

duced oligomers of n = 2–5 (30–33) in a limited number of steps (Figures S53–S59

and S93–S98).

During these experiments, a number of observations were made. Firstly, although a

temperature of 130�C was required for the chain extension and oligomer synthesis

with brominated piperidine-based species, for diisopropyl-functionalized oligo-

mers, 90�C was found to be sufficient to give complete conversion within 1 hr of re-

action, leading to cleaner reaction products. Indeed, for all other end-capping

groups investigated during this work, 90�C was high enough to facilitate reaction.39

Secondly, although couplings generally proceeded cleanly, the amount of side
Chem 2, 125–138, January 12, 2017 129
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(A) Synthesis of unsymmetrical, orthogonally protected oligo-EDOT diesters 37–40 with iso-propyl and tert-butyl end groups.

(B) Triethylene glycol ester-capped tetra-EDOT 41 with improved solubility.
products produced increased with increasing oligomer length. The major side prod-

uct was found to stem from the instability of the brominated species, resulting in

partial dehalogenation and subsequent homo-coupling and, to a lesser extent,

homo-coupling of the non-brominated reaction partner. Such side reactions have

been studied extensively40 and are also known to occur during Stille and Suzuki

polymerizations.41 Although outside the scope of this work (which focuses on the

use of unoptimized, simple, and cheap catalyst systems), it is likely that such prod-

ucts could be minimized through judicious choice of both metal and ligand.42

To create functional oligomers primed for further reaction and derivatization, we

considered that a number of common reactive handles would not be amenable to

the chain extension and bromination procedures described above.43 It would there-

fore be advantageous to be able to install functionality at a late stage after oligomer

synthesis. Thus, we investigated the use of orthogonal ester-protecting groups to

provide latent functionality. Initial attempts to react methyl ester 7 with an excess

of EDOT 1 led not only to chain extension but also to a significant amount (�40%)

of ester cleavage (see Scheme S2A). However, switching to iso-propyl ester 8 lead

to a clean conversion to dimer 34 at 90�C, followed by subsequent bromination

and extension to yield trimer 35 (reaction at 130�C as described for piperidine olig-

omers led to complete ester cleavage; see Scheme S2B; Figures S60–S63, S101, and

S102). Similarly, the orthogonally protected tert-butyl ester 9 could undergo itera-

tive chain extension and bromination to yield brominated dimer 36 (Figures S64,

S65, and S111–S114).

With these substrates in hand, we were able to synthesize di-capped, orthogonally

protected oligomers 37–40 with n = 2–5 in a short number of steps and in good

yields (Scheme 3A; see Scheme S2C for full details and Figures S66–S71). Although

the synthesis of tetramer 39 and pentamer 40 was confirmed by mass spectrometry,

the propensity of the constructs to aggregate in solution prevented analysis by
13C NMR. As an alternative, constructs possessing a solubility-enhancing triethylene

glycol chain could also be produced as discussed above (41; Scheme 3B; Figures S72

and S103–S110). Here, the significant difference in end-group polarity greatly aided

purification, offering a potential means of enhancing purity during particularly diffi-

cult separations. This representative example demonstrates an important advantage

of the synthesis reported in this work; because the choice of end group is an impor-

tant determinant in the material properties of the synthesized constructs, simply

choosing an appropriate end cap can alter factors such as the solubility of the mate-

rial to reflect the desired application.
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Scheme 4. Synthesis of Dimethoxythiophene-Containing Isomers

Pentameric EDOT oligomers containing a single DMT unit were synthesized for the generation of the structural isomers 45, 46, and 47.
Amide coupling after sequential ester deprotection, first in the presence of trifluoro-

acetic acid to remove the tert-butyl group and then in the presence of sodium

hydroxide to cleave the iso-propyl ester, allowed the subsequent synthesis of un-

symmetrical constructs bearing reactive functionality for further modification (see

Scheme S3; Figures S115 and S116). As a result of the mild amide- or ester-forming

conditions required, this method is applicable to the late-stage hetero-functionaliza-

tion of the oligomers reported with a wide range of reactive or functional groups,

such as those shown in Scheme 1. The potential applications of this methodology

are diverse. The ability to create hetero-bifunctional oligomers of a tunable length

and bearing handles for further modification allows the modular synthesis of more

complex structures. For example, the integration of such constructs into biologically

active scaffolds2 or the production of amphiphilic, self-assembling morphol-

ogies44,45 offers exciting possibilities in the fields of both the material and biomed-

ical sciences.

Finally, we wished to investigate the application of our methodology to the synthe-

sis of mixed oligomers composed of different monomer units, which could possess

interesting properties. In particular, we considered the rigidity of EDOT oligomers,

which are known to lead to highly planar structures with enhanced p conjugation.23

We reasoned that disrupting planarity in a controlled fashion could tune the

properties of the resultant material. Structurally related dialkoxythiophene mono-

mers such as 3,4-dimethoxythiophene (DMT, 43) and 3,4-propylenedioxythio-

phene (ProDOT, 44) were found to be suitable substrates for our glyoxylation

and chain-extension procedures. We therefore introduced a single DMT moiety

in an EDOT-pentameric structure to create three structural isomers: 45, 46, and

47 (Scheme 4; see Scheme S4 for full details and Figures S75–S83 and S117–

S124). The simple manner in which such compounds can be created allows the

rapid construction of a library of dialkoxythiophene-based constructs for investi-

gating the effects of structure, substituents, and isomerization on the chemical

and electrical properties of CPs.
Chem 2, 125–138, January 12, 2017 131



Figure 2. Oligomer Optical Characterization

(A) Normalized UV-Vis (solid line) and fluorescence (dashed line) spectra of di-piperidine-capped oligomers 24, 20, and 26–29.

(B) Correlation of inverse chain length and Eopt for oligomers 24, 20, and 26–29 (adjusted R2 = 0.9828).

(C) Summary of Eopt for a series of di-functionalized oligomers.
Oligomer Characterization

Solutions of the di-piperidine-capped oligomers described above (24, 20, and 26–

29) in DCM were analyzed by UV-Vis and fluorescence spectroscopy. Within the

range investigated, the optical properties of thematerials were found to be indepen-

dent of concentration, indicating that aggregation was not occurring. As expected, a

gradual red shift in the onset of absorbance was observed with increasing chain

length (Figure 2), although a blue shift in absorbance maxima for heptamer 29 was

observed, most likely because of the presence of impurities in the sample. Further-

more, the spectra possessed well-defined vibronic structures, a widely reported

feature of EDOT oligomers not shared by unsubstituted thiophene structures.21,23,46

When comparedwith the parent C–H cappedoligomers biEDOT 51 and terEDOT 52,

mono-piperidine-capped dimer 19 and trimer 22 displayed a large red shift in absor-

bance (see Figure S1). This effect was even more pronounced for the di-capped olig-

omers 24 and 20. A red shift in absorbance of >100 nm indicated that conjugation of

the thiophene core with the keto-acid end group, to create an acceptor-donor-

acceptor triad, played a major role in influencing the properties of the synthesized

oligomers, leading to a significant narrowing of the optical gap (Eopt).
47,48
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When compared with those of previously reported EDOT end-capped oligomers,

the absorption spectra were strongly red shifted in relation to the corresponding

mesityl, phenyl, hexyl, and trimethylsilyl structures highlighted in Figure 1.21–24

The remarkably low-energy Eopt of the structures reported here is considered to

be a consequence of the lowering in energy of the lowest unoccupied molecular

orbital (LUMO) as a result of the electron-withdrawing nature of the keto-acid moi-

ety, as discussed later. Oligomer capping with primary amines to yield secondary

amides was found to result in a further lowering of Eopt (Figure 2C, entry 8; Figures

S2 and S151–S158). This effect was enhanced through capping with more electron-

poor ester groups, resulting in an Eopt as low as 1.88 eV for the iso-propyl ester di-

capped pentamer 56 (Figure 2C, entry 10; Figures S84–S86 and S159–S161).

The constrained six-membered ring of EDOT is known to result in favorable attrac-

tive intramolecular S–O interactions between repeating units.23,49 This effect is

reduced upon the introduction of the more structurally flexible methoxy units of

DMT. Therefore, as predicted, the introduction of a single DMT residue into an

EDOT pentamer led to an increase in Eopt as a result of disruption of the highly planar

EDOT-repeating structure. This effect was found to be position dependent such that

the length of the longest continuous EDOT chain determined the degree of disrup-

tion. When compared with the pentaEDOT oligomer 27, DMT-containing isomer 45

(four continuous residues) exhibited a DEopt = +0.013 eV, whereas isomer 47 (two

continuous residues) possessed an increased DEopt = +0.057 eV (Figure 2C, entries

11–13). This widening of the optical gap was further enhanced in an oligomer con-

sisting of end-capped penta-DMT 57 (DEopt = +0.122 eV) or the analogous penta-

ProDOT oligomer 58 (DEopt = +0.44 eV) (Figure 2C, entries 14 and 15; Figures

S87, S88, and S164–S173). These results support our hypothesis that the oligomer

properties can be tuned through the suitable choice and positioning of alternative

monomer units.

Next, we investigated the solution electrochemical properties of selected oligomers

by cyclic voltammetry. Di-piperidine-capped oligomers 24, 20, and 26–28 (n = 2–6)

were all investigated. However, because of the low solubility of EDOT-heptamer 29

and its reduced purity, weak signal intensity was observed during measurements,

and therefore this structure was not further investigated. Cyclic voltammograms

(CVs) demonstrated a decrease in the first oxidation potential with increasing chain

length, supporting the results obtained by UV-Vis spectroscopy (Figure 3A). Linear

correlations were found between the first and second oxidation potentials and the

inverse chain length (Figure 3B; see Table S1). The oxidation of oligomers 24, 20,

and 26 (n = 2–4) was electrochemically quasi-reversible, whereas pentamer 27 and

hexamer 28 displayed improved electrochemical reversibility (Figure 3). Further-

more, CVs of penta-DMT 57 and penta-ProDOT 58 allowed comparison with

penta-EDOT 27 (see Figure S3). As was seen for the optical gap, the first oxidation

potential was found to follow the trend EDOT < ProDOT < DMT. These results

further support the higher effective conjugation of EDOT oligomers and a degree

of planarity disruption induced by the high torsional strain of DMT-based struc-

tures.50 The ease with which the oxidation potentials can be tuned, through both

alteration of oligomer length and monomer composition, offers intriguing possibil-

ities for applications not only in tissue engineering but also in creating sensitive and

selective organic bioelectronics.51,52

Finally, we undertook computational density functional theory (DFT) calculations to

further probe the influence of the keto-acid end groups on oligomer properties.53

The trends observed in the calculated HOMO-LUMO gaps during these studies
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Figure 3. Cyclic Voltammetry Characterization

(A) Cyclic voltammograms of piperidine-capped oligomers 24, 20, and 26–28. CVs were recorded

at a scan rate of 100 mV s�1 with oligomer concentrations of 1 mM in DCM containing 0.1 M

Bu4NPF6.

(B) Correlation of inverse chain length and first and second oxidation potentials for oligomers 24,

20, and 26–28 (adjusted R2 = 0.9680 and 0.9725, respectively).
reproduced the structural and length dependencies observed during experimental

measurements. Initial calculations on carboxy-terminated EDOT pentamer 59 vali-

dated our hypothesis that the keto-acid end group played an important role in

extending p conjugation (Figure 4). This was particularly true for the LUMO—the

electron-withdrawing nature of the end group led to a large orbital localization

across the ketone group. Partial distribution of the LUMO across the terminal

carboxyl indicated that the choice of an ester or amide linkage might influence the

electrical properties of oligomeric constructs. Thus, compared with an analogous

amide substrate, the presence of a more electron-deficient ester group would be ex-

pected to lower the LUMO level, leading to a decreased HOMO-LUMOgap (see Fig-

ure S4). This supports our experimental observation of a lower Eopt for iso-propyl

ester di-capped oligomers than for amide-capped structures.

DFT also provided rationale for the increase in Eopt observed for tertiary-amide-

capped structures. To accommodate the steric bulk of both the piperidine and dii-

sopropylamine substituents, the dicarbonyl groups were found to be significantly

disrupted from the antiperiplanar orientation observed for other substituents. This

led to dihedral angles of as little as 131� for diisopropyl-capped dimer 60 and

142� for piperidine-capped dimer 24 (see Figures S5, S89, S90, S162, and S163).

As a result, conjugation was partially disrupted, leading to an increase in the

HOMO-LUMO gap, supporting the observed increase in Eopt. Replacement of

EDOT with DMT or ProDOT offered two different mechanisms by which disruption

of the expected planar configuration could potentially occur. In the case of DMT,

the high torsional strain of consecutive units was found to lead to a slight twisting

of the backbone for longer oligomer structures, therefore decreasing effective

conjugation. In contrast, calculations predicted a slight deflection of the alkoxy sub-

stituents in the ProDOT structure (174� and 180� dihedral angle in EDOT and DMT,
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Figure 4. DFT Orbital Projections

(A) HOMO orbital distribution of carboxy-

capped pentamer 59.

(B) LUMO orbital distribution.
respectively) to accommodate an expanded seven-membered ring. The resultant

cumulative decrease in electron donation from these substituents might explain

the slight increase in Eopt observed for the ProDOT derivatives described above.

Conclusions

We have developed a glyoxylation end-capping strategy that allows the rapid instal-

lation of keto-amides and keto-esters at the end of oligomeric-EDOT chains. The

resultant materials retain solubility and are bench stable, in contrast to previous re-

ports of oligo-EDOT derivatives. These developments allow us to report the synthe-

sis of hexa- and heptameric EDOT constructs for the first time. Furthermore, the use

of iterative chain extension allows the construction of hetero-bifunctional constructs

bearing orthogonally reactive handles for further modification. Characterization of

the structures produced demonstrated the important role played by the keto-acid

end group in determining oligomer properties. The remarkably low optical gap

observed for the oligomeric structures was attributed to the important role played

by the extended conjugated system, particularly in lowering the LUMO energy, as

demonstrated by DFT calculations. Notably, through suitable choice of oligomer

length, end group, and monomer composition, the optical, electronic, and physical

properties of a construct can be readily tuned both across a wide range and with fine

control. This ability to undertake a flexible and modular approach to structural

design creates intriguing opportunities in the synthesis of novel materials. Work to

explore the full possibilities of this powerful methodology is currently ongoing in

our group for the integration of tunable conjugatedmaterials into tissue engineering

scaffolds.

EXPERIMENTAL PROCEDURES

General Method for EDOT Glyoxylation

Oxalyl chloride (850 mL, 10 mmol) was added drop-wise to a solution of EDOT

(1.05 mL, 10 mmol) in dioxane (30 mL). The mixture was heated to 100�C for 1 hr

and then allowed to cool to room temperature. The requisite amine (15 mmol)

and base (50 mmol) were then added, and the mixture was stirred for 3 hr. After

this time, the mixture was diluted with DCM (150 mL) and washed with water

(100 mL), and the organics were dried with MgSO4, filtered, and concentrated in

vacuo. The residue was purified by flash column chromatography, and pure fractions

were concentrated in vacuo.

General Method for Monomer Bromination

EDOT derivative (5 mmol) was dissolved in a mixture of tetrahydrofuran (THF, 5 mL)

and acetic acid (3 mL). If solubility was poor, a further 25 mL of THF was added. The

mixture was placed in the dark, andN-bromosuccinimide (6 mmol) was added. After

being stirred for 2 hr, the mixture was either precipitated in water (150 mL), causing
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precipitation of the product, which could be collected by filtration, or diluted with

DCM (150 mL) and washed with saturated NaHCO3 (3 3 100 mL), dried with

MgSO4, filtered, and concentrated in vacuo. Column chromatography was then

undertaken if required, although the products were usually sufficiently pure for

further use.

General Method for Chain Extension

Brominated monomer (1 mmol), pivalic acid (0.5 mmol), palladium(II) acetate

(0.05 mmol), and potassium carbonate (10 mmol) were charged under nitrogen.

Dry DMF (2 mL) and EDOT (4 mmol) were then added, and the mixture was heated

to 90�C for 2 hr. After cooling to room temperature, the mixture was diluted with

DCM (50 mL) and washed with water (2 3 50 mL) and brine (50 mL). The organics

were dried with MgSO4, filtered, and concentrated in vacuo. The residue was puri-

fied by flash column chromatography, and pure fractions were concentrated in

vacuo.

General Method for Oligomer Synthesis

Brominated oligomer (1 mmol), hydrogen-capped oligomer (1.2 mmol), pivalic acid

(0.5 mmol), palladium(II) acetate (0.05 mmol), and potassium carbonate (10 mmol)

were charged under nitrogen. Dry DMF (2 mL) was added, and the mixture was

heated to 90�C for 2 hr. After cooling to room temperature, the mixture was diluted

with DCM (50mL) and washed with water (23 50mL) and brine (50 mL). The organics

were dried with MgSO4, filtered, and concentrated in vacuo. The residue was puri-

fied by flash column chromatography, and pure fractions were concentrated in

vacuo.
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(2006). High-resolution electronic spectra of
ethylenedioxythiophene oligomers. J. Am.
Chem. Soc. 128, 17007–17017.

25. Merkul, E., Dohe, J., Gers, C., Rominger, F., and
Müller, T.J.J. (2011). Three-component
synthesis of ynediones by a glyoxylation/
Stephens-Castro coupling sequence. Angew.
Chem. Int. Ed. Engl. 50, 2966–2969.

26. Spicer, C.D., and Davis, B.G. (2014). Selective
chemical protein modification. Nat. Commun.
V5, P4740.

27. Stefan, M.C., Bhatt, M.P., Sista, P., and
Magurudeniya, H.D. (2012). Grignard
metathesis (GRIM) polymerization for the
synthesis of conjugated block copolymers
containing regioregular poly(3-
hexylthiophene). Polym. Chem. 3, 1693–1701.

28. Xu, S., Kim, E.H., Wei, A., andNegishi, E. (2014).
Pd- and Ni-catalyzed cross-coupling reactions
in the synthesis of organic electronic materials.
Sci. Technol. Adv. Mater. 15, 44201.

29. Carsten, B., He, F., Son, H.J., Xu, T., and Yu, L.
(2011). Stille polycondensation for synthesis of
functional materials. Chem. Rev. 111, 1493–
1528.

30. Zhao, H., Liu, C.-Y., Luo, S.-C., Zhu, B., Wang,
T.-H., Hsu, H.-F., and Yu, H.-H. (2012). Facile
syntheses of dioxythiophene-based
conjugated polymers by direct C–H arylation.
Macromolecules 45, 7783–7790.

31. Vechorkin, O., Proust, V., and Hu, X. (2009).
Functional group tolerant Kumada-Corriu-
Tamao coupling of nonactivated alkyl halides
with aryl and heteroaryl nucleophiles: catalysis
by a nickel pincer complex permits the
coupling of functionalized Grignard reagents.
J. Am. Chem. Soc. 131, 9756–9766.

32. Schipper, D.J., and Fagnou, K. (2011). Direct
arylation as a synthetic tool for the synthesis of
thiophene-based organic electronic materials.
Chem. Mater. 23, 1594–1600.

33. Segawa, Y., Maekawa, T., and Itami, K. (2015).
Synthesis of extended p-systems through C-H
activation. Angew. Chem. Int. Ed. Engl. 54,
66–81.

34. Lafrance, M., and Fagnou, K. (2006). Palladium-
catalyzed benzene arylation: incorporation of
catalytic pivalic acid as a proton shuttle and a
key element in catalyst design. J. Am. Chem.
Soc. 128, 16496–16497.

35. United States Phamacopeia Convention.
(2015). <232> Elemental Impurities - Limits
(United States Pharmacopeia).

36. Torborg, C., and Beller, M. (2009). Recent
applications of palladium-catalyzed coupling
reactions in the pharmaceutical, agrochemical,
and fine chemical industries. Adv. Synth. Catal.
351, 3027–3043.

37. Recho, J., Black, R.J.G., North, C., Ward, J.E.,
and Wilkes, R.D. (2014). Statistical DoE
approach to the removal of palladium from
active pharmaceutical ingredients (APIs) by
functionalized silica adsorbents. Org. Process.
Res. Dev. 18, 626–635.
Chem 2, 125–138, January 12, 2017 137

http://refhub.elsevier.com/S2451-9294(16)30268-6/sref1
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref1
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref1
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref2
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref2
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref2
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref2
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref3
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref3
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref3
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref3
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref4
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref4
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref4
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref5
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref5
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref5
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref5
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref5
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref6
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref6
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref6
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref6
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref6
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref7
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref7
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref7
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref7
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref7
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref7
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref7
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref8
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref8
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref8
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref8
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref8
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref8
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref9
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref9
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref9
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref9
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref10
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref10
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref10
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref10
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref10
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref11
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref11
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref11
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref11
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref11
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref11
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref12
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref12
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref12
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref13
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref13
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref13
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref14
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref14
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref14
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref14
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref14
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref15
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref15
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref15
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref15
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref15
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref16
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref16
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref16
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref16
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref16
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref16
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref17
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref17
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref17
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref17
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref17
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref18
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref18
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref18
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref18
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref18
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref18
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref18
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref19
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref19
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref19
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref19
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref19
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref20
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref20
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref20
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref20
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref20
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref20
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref21
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref21
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref21
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref21
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref21
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref21
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref22
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref22
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref22
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref22
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref22
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref22
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref23
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref23
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref23
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref23
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref24
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref24
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref24
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref24
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref24
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref25
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref25
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref25
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref25
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref25
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref26
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref26
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref26
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref27
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref27
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref27
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref27
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref27
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref27
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref28
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref28
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref28
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref28
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref29
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref29
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref29
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref29
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref30
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref30
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref30
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref30
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref30
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref31
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref31
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref31
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref31
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref31
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref31
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref31
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref32
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref32
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref32
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref32
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref33
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref33
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref33
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref33
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref34
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref34
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref34
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref34
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref34
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref35
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref35
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref35
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref36
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref36
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref36
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref36
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref36
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref37
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref37
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref37
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref37
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref37
http://refhub.elsevier.com/S2451-9294(16)30268-6/sref37


38. Cano, R., Schmidt, A.F., and McGlacken, G.P.
(2015). Direct arylation and heterogeneous
catalysis; ever the twain shall meet. Chem. Sci.
6, 5338–5346.

39. Bura, T., Blaskovits, J.T., and Leclerc, M. (2016).
Direct (hetero)arylation polymerization: trends
and perspectives. J. Am. Chem. Soc. 138,
10056–10071.

40. Lombeck, F., Komber, H., Gorelsky, S.I., and
Sommer, M. (2014). Identifying homocouplings
as critical side reactions in direct arylation
polycondensation. ACSMacro Lett. 3, 819–823.

41. Hong, W., Chen, S., Sun, B., Arnould, M.A.,
Meng, Y., and Li, Y. (2015). Is a polymer
semiconductor having a ‘‘perfect’’ regular
structure desirable for organic thin film
transistors? Chem. Sci. 6, 3225–3235.

42. Tan, Y., and Hartwig, J.F. (2011). Assessment of
the intermediacy of arylpalladium carboxylate
complexes in the direct arylation of benzene:
evidence for C-H bond cleavage by
‘‘ligandless’’ species. J. Am. Chem. Soc. 133,
3308–3311.

43. Johansson Seechurn, C.C.C., Kitching, M.O.,
Colacot, T.J., and Snieckus, V. (2012).
Palladium-catalyzed cross-coupling: a
138 Chem 2, 125–138, January 12, 2017
historical contextual perspective to the 2010
Nobel Prize. Angew. Chem. Int. Ed. Engl. 51,
5062–5085.

44. Jatsch, A., Schillinger, E.-K., Schmid, S., and
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