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ABSTRACT -

This paper extends an analysis of plastic stress waves, originated by G.
I. Taylor in reference 1, for cylindrical metallic projectile in impact to an .
analysis of a hemispherical shell suffering plastic deformation during the
process of impact. In that, it is assumed that the hemispherical shell with a
prescribed launch velocity impinges a fixed rigid sphere of diameter equal to
the internal diameter of the shell. Particularly this study is directed in
order to investigate the dynamic biaxial state of stress present in the shell
during deformation.

The results of this analysis are compared with Taylor's reference 1 and it
has been found that this analysis is an extension of the one-dimensional
analyses of references 1, 2, 3, and 4, to spherical coordinates. It is valuable
for studying the state of stress during large plastic deformation of & hemi-
spherical shell.

INTRODUCTION

The object of this paper is to develop an analysis of plastic hemispheri-
cal stress-wave propagation and to use this analysis for determining the
dynamic biaxial yield stress. The,Tresca yield criteria is used as the yield
condition. Higher order terms are included in the derivations; thus, this
analysis is valid for large deformations.

G. I. Taylor in reference 1 used the governing physical laws and the
geometry during plastic deformation of the cylindrical projeétile to formulate
differential equations which are solved in order to determine the dynamic yleld
stress in impact. This analysis of a hemispherical shell impacting a fixed
rigid sphere, of diameter equal to the internal diameter of the shell, is
similar to the analysis of a cylindrical projectile impacting a rigid target of
references 1, 2, 3, and 4. In fact, in all these cases during impact it is
assumed that when the stress rise exceeds the elastic limit of the material,
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two waves are generated. The first of these is the elastic wave, which travels
with a velocity c¢. It is followed by the plastic stress wave which travels
with a slower velocity v. Through an analysis of the propagation of these two
stress waves, a method is formed which can be used to determine the dynamic
yield stress of the material of a hemispherical shell. The proper choice of
the time increment, dt, simplifies the analysis greatly. The choice is to make
the time increment equal to the length of time required for the elastic wave to
complete a double passage of the elastic zone. If the difference equations are
derived by utilizing this time increment, which is eliminated by combining the
derived difference equations, the governing equations which are derived are
free of this time increment. This mathematical approach, for the biaxial state
of stress of the hemispherical shell, closely parallels Taylor's analysis of
the cylindrical projectile.

NOMENCLATURE
AO Projection at the elastic-plastic boundary undeformed area at time ¢
A Projection at the elastic-plastic boundary deformed area at time t + 4t
a Initial inside radius
b Initial outside radius
c Elastic wave velocity
dh Incremental plastic radius
dr Incremental elastic radius
dt Time for a double passage of elastic region by elastic wave
E Young's modulus
h Thickness of plastic region at time t
r, Initial elastic length of shell in the radial direction = b - a

ry Final total length of shell in the radial direction

r Thickness of shell in the elastic zone at time t

R Final thickness of the elastic region

Sl Dyhamic yield stress - calculated by the approximate method

S Dynamic yield stress - calculated by the exact method

t Time
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U Initial radial velocity due to launch velocity
u Particle velocity in the elastic region

v Absolute velocity of the plastic wave front

Y Yield stress in uniaxial tension
& Tnitial radial strain
€ Radial strain at time t

o. Density

v Poisson's ratio

ANATYSTS
Problem Description

A hemispherical metallic shell strikes with a prescribed velocity a rigid
sphere (of diameter equal to the internal diameter of the shell) which is
permanently fixed at a base retaining zero velocity during the process of
impact. During this impact, a radial motion is directed from the internal sur-
face of the shell toward the external surface of the same. The radial particle
velocity of the internal surface of the shell is initially the same as the
impact velocity and is denoted by U. If the biaxial stress exceeds the elastic
1limit, two waves are generated at the internal surface of the shell. The first
wave is the elastic wave which travels with velocity c. The second is the
plastic wave which travels with velocity v. The elastic compressive stress
wave, which propagates radially outward in the elastic region with velocity e,
will ‘reduce the impact velocity U to U-(S/pc). During this time, the stress
reaches the elastic limit. This elastic wave will reflect at the external
surface of the sphere, resulting in an elastic tensile wave being superposed on
the compressive elastic wave. The material which has been passed by this re-
flected elastic wave is stress free and has a velocity equal to U-(28/pc). At
the particular time when this wave reaches the elastic-plastic boundary, the
. shell is in a condition similar to the initial impact, except that its speed

is equal to U-(28/pc) and its elastic thickness is less than the original value.
At this time, it is assumed that the plastically deformed material will be
attached to the sphere and acts on the elastic part of the shell as a rigid
material. This continues until the speed of the shell becomes equal to zero.
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~ Assumptions

In order to work out the mathematical analysis of this problem, several
basic assumptions are needed.

First, for axially symmetrical analysis, the shell must be symmetric with
respect to its axis of symmetry and maintain this symmetry during the process
of impact. The second assumption is that the elastic strain is negligible.
This assumption is valid if the plastic strain is large, thus making the elas-
tic strain very small in comparison with the plastic strain. Along the same
lines as the previous assumption, the third assumption is that the material is
taken to be perfectly plastic. Although no material behaves exactly in a
perfectly plastic manner, some materials approach this type of behavior at high
strain rates. This dynamic-plastic stress-wave analysis is for extremely high
strain rates. Thus it is possible to assume that the material is perfectly
plastic without the loss of much generality in the solution. The fourth
assumption, which is usually made in plasticity problems, is that the density
of the shell material remains constant. The fifth and final assumption is
that the material in the plastic region, after being deformed, does not possess
elastic properties; thus it behaves as a rigid material with zero velocity.

Physical Laws

By considering the problem description, and assumptions, the governing
physical laws can be formulated. ,

Choose the time increment, dt, to be equal to the time required for a
complete double passage of the elastic wave through the elastic region. Since
the length of material in the elastic zone is defined as r and the elastic wave
velocity is e, it follows that

at = 2r/c - | (1)
where |

c={E (1-v)/ {p(1 + vi(l _2v)11?

dn = v (2r/e) | (2)

ar = —(u + v) (2r/c) | (3)

du = - 25/(pe) ‘ (h5

Using equation (1) to eliminate ¢ from equations (2), (3), and () results in

L=y | (5)
%E:-(u+v) (6)
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du _
= = - 8/(pr) (1)
for conservation of mass

Avs=(u+ V)A.O : ‘ (8)
The momentum equation reduces to

S(a-A)=1/2(A+a) (u+v)up - (9

The radial strain is defined, at the plastic boundary, by

e=1-4/A | | (10)

Combining eguations (8), (9), and (10)
| pﬁz/s =2 ¢?/(2 - &) | L (11)
Combining equations (6), (T), (8), and (10)
| ,% = pur/(Se) : | | | (12)
Integrating equation (12)
Log (r?) = fl/e a{e?/(1 - /2)}
=L4/(2 - €) - 2 Log, (1 - ¢/2) + Const:ant (13)

At time t = 0, u=U, r=r , and € = €5 thus equation (11) and equation
(13) become, respectively

pU2/s = 2 E§ /(2 - el) I (1)

2 . N oy
Loge(r/ro)v .-kh/(z - e) - 2 Log_ (; - €/2) ¢ ‘h/(e - el)
+ 2 Loge (1 - 81/2) (15)
When all motion has ceased, r = R, and € = 0, and R can be measured.
Log (R/r )2 =2 -L4/(2 -¢ ) + 2 Log (1 - € /2) (16)
e o] 1 o e 1 ‘

Combining equations (5), (6), (8) and (10)

h = f&=°fr(1,- SE B (1)
)L
. ,
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Combining equations (T7), (11), and (1) ,
€
U‘b/ro =¢ (1 -¢ /2)—1/21- 1r/r (1 - e/W)/(1 - 8/2)3/2d€ (18)
1 1 o

If uniformly spaced values of e, are plaged in equations (14) and (16),

pU2/S vs R/r_can be plotted. Evaluation of equation (17) for h is accomp-
lished by Simpgon's rule integration. Results of these calculations are
plotted in Figure 1.

Two different methods of integration were employed to evaluate the inte-
gral equations (17) and (18). The first method used was a Simpson's rule
integration. Results for wvarious e, are plotted in Figure 2.

The second method of integration was using the asymptotic expansion of
the integrals. References 5, 6, and T provide information on asymptotic
power-series expansions. Values obtained by asymptotic expansion agreed well .
with those obtained by Simpson's rule integration.

To develop a simple formula for calculating the dynamic yield stress from
measurements made before and after the impact, it will be additionally assumed
that the plastic boundary propagates at a constant velocity from the inside
radius a to its final position. The velocity of the plastic boundary equals C.

Combining equations (6) and (7)

8 - 5/{pr(u + C)} (19)

dr
Integrating equation (19) results in

S/p Log, (r/ro) =1/2u? + Cu-1/2U02 - C U (20)
When u = 0, r = R and equation (20) becomes

S/ Log, (R/ro) = - 1/2U02 - C U (21)

At time t = 0, u = U. Assuming u decreases to zero uniformly with time,
in a time equal to T

T=(r -R)/C=2(r -1 )/U
1 o 1
Rearranging c/u = 1/2 (r1 —vR)/(r:o - rl)

Therefore, equation (21) becomes

8 /o0 = (r, - R)/[2(x, - r ) Log_ (r /R)] (22)

The fact that the decrease in u is not uniform results in an error which
can be calculated. Combining equations (3) and (20)
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ar] 2 _ 2
[&t = 28/p Log, (r/ro) + (U + C) (23)

When all motion has ceased, u = 0, r = R, and € = 0. Therefore, equation (21)
becomes

28/p Log, (R/ro) =¢2 - (y+ C)2 (24)
Letting

28/p = a?

K= (U+C)/a

Ry = r/rO

ty = at/ro

Ty = QT/TO

where T is the time from the initial impact until the plastic zone velocity
equals zero
’ dRy

— = (K* + ILog, R1)l/2
atq
so that 1
2 -1/2
Tl = / c 2 (K +‘L0ge Rl)de (25)
expl &) - ¥*1
o
Letting
72 = K2 + Loge Ry
results in K
%2 2
T =2e K -y e? dz (26)
€/
K

-K2 7,2

Values of F(K) = e Jf e” 47 have been tabulated in references 5 and

1t

6. Equation (26) can be ©  expanded using this function, F(K), to give
T) = 2 {F(K) - Exp (-K% + (C/a)2) F(C/a)} (27)

Previously it was assumed that the plastic boundary moves with a constant
velocity C, or
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or in dimensionless form

C/a Tl = rl/ro - R/%} ) (28)
Rearranging, equation (24%) becomes

Log, (ro/R) = K2 - (C/a)? ; (29)

Since R/r. and rl/ro can be measured, C/o, U/a, K and T can be evaluated
from equations ?27), (28), (29), and’

K = Ula + C/a | (30)
Combining equations (27), (28), and (29)

rl/ro = 2 C/a F(K) - {2 C/a F(C/a) - 1} R/r - (31)
Since

25/pU% = a?2/U% = 1/(K - C/a)?
dividing this equation by equation (22) therefore results in

S/S1 = (ro - rl)/(rO - R) {Loge (rO/R)/(K - C/a)?] (32)

Due to the complexity of these equations, the correction factor, S/Si,
cannot be determined directly. To determine S/S; given R/r and ri/r_ it is
easiest to first form the curves of 8/S; vs ri/r with contdurs of equal h/r .
Values for this curve can be obtained by taking & value of R/r_ and values o
C/a which cover the desired range. Therefore, using equation ?29), equations
(31) and (32) can be evaluated. :

The asymptotic expansion of F(K) is
F(K) = 1/(2K) + 1/(4K3) + 3/(8K>) + 15/(16K7) * ... (33)

Through some complex manipulations, it can be shown, although it will not
be presented here, that as C/o - =

rl/ro + 1.0 (34)
and
8/8y =2 {1/(1 - R/r ) - 1/(Log (r_/R))} (35)

From this equation, the limiting values of S/S; can be determined as
rl/ro =+ 1.0.

This completes the analysis of the problem. Thus, if values of ¥ , 71,

and h are given, the dynamic yield stress can be calculated for the hemgspheri—
cal shell.
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DISCUSSION AND CONCLUDING REMARKS

In this paper, a method is developed to investigate the propagation of
plastic stress waves in a hemispherical shell. In particular, this study
investigates the dynamic yield stress due to the impulsive loading initiated
at the interface of the shell. This mathematical approach, for determining
the biaxial state of stress of the hemispherical shell, closely parallels
Taylor's analysis of the cylindrical projectile. It is interesting to note
that if all higher order terms were dropped from this analysis, the results
would be the same as those of reference 1 except that the components. are
defined differently. Graphs which are drawn from this analysis in Figures 1
and 2 are similar to Figures 2 and 3 of reference 1. In addition, comparison
between the results of this analysis and the analysis of reference 1 is
possible. In fact, when these two analyses are compared, one can observe that
the results of the present work parallel the experimental data more closely.
than the results of reference 1. This is due to the fact that one-dimensional
analysis may not possibly explain the spreading out of the projectile near the
target. This phenomenon requires taking into account the inertia in the radial
direction.

The derivation of the yield stress correction factor is almost identical
with the results of reference 1 on page 297. Singularities were observed
which were not discussed in reference 1. The discontinuities occurred just
before r.,/r + 1.0. If the discontinuity is ignored, the results are similar
to those of reference 1.

A method has been presented by which the dynamic yield stress can be
calculated, using the Tresca yield criteria, from the radial expansion of a
hemispherical shell. The approximate yield stress can be calculated from
equation (22), if the initial conditions, final conditions, U, and p are
specified. The dynamic yield stress could also be calculated from Figure 1.
Thus, the dynamic yield stress can be determined if certain initial and final
experimental conditions are specified, including the launch velocity, density,
and geometrical considerations of the shell. The motion of the plastic
boundary, as shown in Figure 2, is similar to the results obtained in Figure &
of reference 8. Their choice of coordinates is differegt, which accounts for
many of the differences between the shape of their curve and of Figure 2.
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