7,594 research outputs found

    Numerical flow model of the Missoula Aquifer : interpretation of aquifer properties and river interaction

    Get PDF

    Word Adjacency Graph Modeling: Separating Signal From Noise in Big Data

    Get PDF
    There is a need to develop methods to analyze Big Data to inform patient-centered interventions for better health outcomes. The purpose of this study was to develop and test a method to explore Big Data to describe salient health concerns of people with epilepsy. Specifically, we used Word Adjacency Graph modeling to explore a data set containing 1.9 billion anonymous text queries submitted to the ChaCha question and answer service to (a) detect clusters of epilepsy-related topics, and (b) visualize the range of epilepsy-related topics and their mutual proximity to uncover the breadth and depth of particular topics and groups of users. Applied to a large, complex data set, this method successfully identified clusters of epilepsy-related topics while allowing for separation of potentially non-relevant topics. The method can be used to identify patient-driven research questions from large social media data sets and results can inform the development of patient-centered interventions

    The Distribution and Cosmic Density of Relativistic Iron Lines in Active Galactic Nuclei

    Full text link
    X-ray observations of several active galactic nuclei show prominent iron K-shell fluorescence lines that are sculpted due to special and general relativistic effects. These observations are important because they probe the space-time geometry close to distant black holes. However, the intrinsic distribution of Fe line strengths in the cosmos has never been determined. This uncertainty has contributed to the controversy surrounding the relativistic interpretation of the emission feature. Now, by making use of the latest multi-wavelength data, we show theoretical predictions of the cosmic density of relativistic Fe lines as a function of their equivalent width and line flux. We are able to show unequivocally that the most common relativistic iron lines in the universe will be produced by neutral iron fluorescence in Seyfert galaxies and have equivalent widths < 100 eV. Thus, the handful of very intense lines that have been discovered are just the bright end of a distribution of line strengths. In addition to validating the current observations, the predicted distributions can be used for planning future surveys of relativistic Fe lines. Finally, the predicted sky density of equivalent widths indicate that the X-ray source in AGNs can not, on average, lie on the axis of the black hole.Comment: 12 pages, 3 figures, accepted by ApJ Letter

    Flame spread across liquids

    Get PDF
    Recent reviews of our understanding of flame spread across liquids show that there are many unresolved issues regarding the phenomenology and causal mechanisms affecting ignition susceptibility, flame spread characteristics, and flame spread rates. One area of discrepancy is the effect of buoyancy in both the uniform and pulsating spread regimes. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity (1g) and microgravity (micro g) experiments; and (2) numerical modeling at different gravitational levels. Of special interest to this work, as discussed at the previous workshop, is the determination of whether, and under what conditions, pulsating spread occurs in micro g. Microgravity offers a unique ability to modify and control the gas-phase flow pattern by utilizing a forced air flow over the pool surface

    Temperature Field During Flame Spread over Alcohol Pools: Measurements and Modelling

    Get PDF
    A principal difference between flame spread over solid fuels and over liquid fuels is, in the latter case, the presence of liquid-phase convection ahead of the leading edge of the flame. The details of the fluid dynamics and heat transfer mechanisms in both the pulsating and uniform flame spread regimes were heavily debated, without resolution, in the 1960s and 1970s; recently, research on flame spread over pools was reinvigorated by the advent of enhanced diagnostic techniques and computational power. Temperature fields in the liquid, which enable determination of the extent of preheating ahead of the flame, were determined previously by the use of thermocouples and repetitive tests, and suggested that the surface temperature does not decrease monotonically ahead of the pulsating flame front, but that there exists a surface temperature valley. Recent predictions support this suggestion. However, others' thermocouple measurements and the recent field measurements using Holographic Interferometry (HI) did not find a similar valley. In this work we examine the temperature field using Rainbow Schlieren Deflectometry (RSD), with a measurement threshold exceeding that of conventional interferometry by a factor of 20:1, for uniform and pulsating flame spread using propanol and butanol as fuels. This technique was not applied before to flame spread over liquid pools, except in some preliminary measurements reported earlier. Noting that HI is sensitive to the refractive index while RSD responds to refractive index gradients, and that these two techniques might therefore be difficult to compare, we utilized a numerical simulation, described below, to predict and compare both types of field for the uniform and pulsating spread regimes. The experimental data also allows a validation of the model at a level of detail greater than has been attempted before

    Interpersonal prosodic correlation in frontotemporal dementia.

    Get PDF
    Communication accommodation describes how individuals adjust their communicative style to that of their conversational partner. We predicted that interpersonal prosodic correlation related to pitch and timing would be decreased in behavioral variant frontotemporal dementia (bvFTD). We predicted that the interpersonal correlation in a timing measure and a pitch measure would be increased in right temporal FTD (rtFTD) due to sparing of the neural substrate for speech timing and pitch modulation but loss of social semantics. We found no significant effects in bvFTD, but conversations including rtFTD demonstrated higher interpersonal correlations in speech rate than healthy controls

    Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex.

    Get PDF
    Cyclic peptide natural products have evolved to exploit diverse protein targets, many of which control essential cellular processes. Inspired by a series of cyclic peptides with partially elucidated structures, we designed synthetic variants of ternatin, a cytotoxic and anti-adipogenic natural product whose molecular mode of action was unknown. The new ternatin variants are cytotoxic toward cancer cells, with up to 500-fold greater potency than ternatin itself. Using a ternatin photo-affinity probe, we identify the translation elongation factor-1A ternary complex (eEF1A·GTP·aminoacyl-tRNA) as a specific target and demonstrate competitive binding by the unrelated natural products, didemnin and cytotrienin. Mutations in domain III of eEF1A prevent ternatin binding and confer resistance to its cytotoxic effects, implicating the adjacent hydrophobic surface as a functional hot spot for eEF1A modulation. We conclude that the eukaryotic elongation factor-1A and its ternary complex with GTP and aminoacyl-tRNA are common targets for the evolution of cytotoxic natural products

    Soft X-ray components in the hard state of accreting black holes

    Full text link
    Recent observations of two black hole candidates (GX 339-4 and J1753.5-0127) in the low-hard state (L_X/L_Edd ~ 0.003-0.05) suggest the presence of a cool accretion disk very close to the innermost stable orbit of the black hole. This runs counter to models of the low-hard state in which the cool disk is truncated at a much larger radius. We study the interaction between a moderately truncated disk and a hot inner flow. Ion-bombardment heats the surface of the disk in the overlap region between a two-temperature advection-dominated accretion flow and standard accretion disk, producing a hot (kT_e ~70 keV) layer on the surface of the cool disk. The hard X-ray flux from this layer heats the inner parts of the underlying cool disk, producing a soft X-ray excess. Together with interstellar absorption these effects mimic the thermal spectrum from a disk extending to the last stable orbit. The results show that soft excesses in the low-hard state are a natural feature of truncated disk models.Comment: 12 pages, 8 figures, accepted by Astronomy & Astrophysics, reference added, minor typos correcte

    X-ray reflection in a sample of X-ray bright Ultraluminous X-ray sources

    Full text link
    We apply a reflection-based model to the best available XMM-Newton spectra of X-ray bright UltraLuminous X-ray (ULX) sources (NGC 1313 X-1, NGC 1313 X-2, M 81 X-6, Holmberg IX X-1, NGC 5408 X-1 and Holmberg II X-1). A spectral drop is apparent in the data of all the sources at energies 6-7 keV. The drop is interpreted here in terms of relativistically-blurred ionized reflection from the accretion disk. A soft-excess is also detected from these sources (as usually found in the spectra of AGN), with emission from O K and Fe L, in the case of NGC 5408 X-1 and Holmberg II X-1, which can be understood as features arising from reflection of the disk. Remarkably, ionized disk reflection and the associated powerlaw continuum provide a good description of the broad-band spectrum, including the soft-excess. There is no requirement for thermal emission from the inner disk in the description of the spectra. The black holes of these systems must then be highly spinning, with a spin close to the maximum rate of a maximal spinning black hole. The results require the action of strong light bending in these sources. We suggest that they could be strongly accreting black holes in which most of the energy is extracted from the flow magnetically and released above the disc thereby avoiding the conventional Eddington limit.Comment: Accepted for publication in MNRA
    corecore