151 research outputs found

    LRRK2 transport is regulated by its novel interacting partner Rab32

    Full text link
    Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain 280 kDa protein that is linked to Parkinson's disease (PD). Mutations especially in the GTPase and kinase domains of LRRK2 are the most common causes of heritable PD and are also found in sporadic forms of PD. Although the cellular function of LRRK2 is largely unknown there is increasing evidence that these mutations cause cell death due to autophagic dysfunction and mitochondrial damage. Here, we demonstrate a novel mechanism of LRRK2 binding and transport, which involves the small GTPases Rab32 and Rab38. Rab32 and its closest homologue Rab38 are known to organize the trans-Golgi network and transport of key enzymes in melanogenesis, whereas their function in non-melanogenic cells is still not well understood. Cellular processes such as autophagy, mitochondrial dynamics, phagocytosis or inflammatory processes in the brain have previously been linked to Rab32. Here, we demonstrate that Rab32 and Rab38, but no other GTPase tested, directly interact with LRRK2. GFP-Trap analyses confirmed the interaction of Rab32 with the endogenous LRRK2. In yeast two-hybrid experiments we identified a predicted coiled-coil motif containing region within the aminoterminus of LRRK2 as the possible interacting domain. Fluorescence microscopy demonstrated a co-localization of Rab32 and LRRK2 at recycling endosomes and transport vesicles, while overexpression of a constitutively active mutant of Rab32 led to an increased co-localization with Rab7/9 positive perinuclear late endosomes/MVBs. Subcellular fractionation experiments supported the novel role of Rab32 in LRRK2 late endosomal transport and sorting in the cell. Thus, Rab32 may regulate the physiological functions of LRRK2

    Application of realistic effective interactions to the structure of the Zr isotopes

    Full text link
    We calculate the low-lying spectra of the zirconium isotopes Z=40 with neutron numbers from N=52 to N=60 using the 1p1/20g9/2 proton and 2s1d0g7/20h11/2 neutron sub-shells to define the model space. Effective proton-proton, neutron--neutron and proton-neutron interactions have been derived using 88Sr as closed core and employing perturbative many-body techniques. The starting point is the nucleon-nucleon potential derived from modern meson exchange models. The comprehensive shell-model calculation performed in this work provides a qualitative reproduction of essential properties such as the sub-shell closures in 96Zr and 98Zr.Comment: To appear in Phys Rev C, june 2000, 8 figs, Revtex latex styl

    Gamow-Teller Strength in the Region of 100^{100}Sn

    Full text link
    New calculations are presented for Gamow-Teller beta decay of nuclei near 100^{100}Sn. Essentially all of the 100^{100}Sn Gamow-Teller decay strength is predicted to go to a single state at an excitation energy of 1.8 MeV in 100^{100}In. The first calculations are presented for the decays of neighboring odd-even and odd-odd nuclei which show, in contrast to 100^{100}Sn, surprisingly complex and broad Gamow-Teller strength distributions. The results are compared to existing experimental data and the resulting hindrance factors are discussed.Comment: 12 pages (latex) and 2 figures available on reques

    Toward a Consistent Description of the PNC Experiments in A=18-21 Nuclei

    Get PDF
    The experimental PNC results in 18^{18}F, 19^{19}F, 21^{21}Ne and the current theoretical analysis show a discrepancy . If one interprets the small limit of the experimentally extracted PNC matrix element for 21^{21}Ne as a destructive interference between the isoscalar and the isovector contribution, then it is difficult to understand why the isovector contribution in 18^{18}F is so small while the isoscalar + isovector contribution in 19^{19}F is relatively large. In order to understand the origin of this discrepancy a comparison of the calculated PNC matrix elements was performed. It is shown that the 18^{18}F and 21^{21}Ne matrix elements contain important contributions from 3ω\hbar \omega and 4ω\hbar \omega configuration and that the (0+1)ω\hbar \omega calculations give distorted results.Comment: REVTEX, 16 pages, 1 postscriptum figure uuencoded and appende

    Shell Model Monte Carlo studies of neutron-rich nuclei in the 1s-0d-1p-0f shells

    Get PDF
    We demonstrate the feasibility of realistic Shell-Model Monte Carlo (SMMC) calculations spanning multiple major shells, using a realistic interaction whose bad saturation and shell properties have been corrected by a newly developed general prescription. Particular attention is paid to the approximate restoration of translational invariance. The model space consists of the full sd-pf shells. We include in the study some well-known T=0 nuclei and several unstable neutron-rich ones around N=20,28. The results indicate that SMMC can reproduce binding energies, B(E2) transitions, and other observables with an interaction that is practically parameter free. Some interesting insight is gained on the nature of deep correlations. The validity of previous studies is confirmed.Comment: 22 pages + 7 postscript figure

    Standardizing the classification of skin tears: validity and reliability testing of the International Skin Tear Advisory Panel Classification System in 44 countries

    Get PDF
    Background: Skin tears are acute wounds that are frequently misdiagnosed and under‐reported. A standardized and globally adopted skin tear classification system with supporting evidence for diagnostic validity and reliability is required to allow assessment and reporting in a consistent way. Objectives:To measure the validity and reliability of the International Skin Tear Advisory Panel (ISTAP) Classification System internationally. Methods: A multicountry study was set up to validate the content of the ISTAP Classification System through expert consultation in a two‐round Delphi procedure involving 17 experts from 11 countries. An online survey including 24 skin tear photographs was conducted in a convenience sample of 1601 healthcare professionals from 44 countries to measure diagnostic accuracy, agreement, inter‐rater reliability and intrarater reliability of the instrument. Results:A definition for the concept of a ‘skin flap’ in the area of skin tears was developed and added to the initial ISTAP Classification System consisting of three skin tear types. The overall agreement with the reference standard was 0·79 [95% confidence interval (CI) 0·79–0·80] and sensitivity ranged from 0·74 (95% CI 0·73–0·75) to 0·88 (95% CI 0·87–0·88). The inter‐rater reliability was 0·57 (95% CI 0·57–0·57). The Cohen's Kappa measuring intrarater reliability was 0·74 (95% CI 0·73–0·75). Conclusions: The ISTAP Classification System is supported by evidence for validity and reliability. The ISTAP Classification System should be used for systematic assessment and reporting of skin tears in clinical practice and research globally.info:eu-repo/semantics/publishedVersio

    Assay strategies for the discovery and validation of therapeutics targeting <i>Brugia pahangi</i> Hsp90

    Get PDF
    The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target

    Social sciences research in neglected tropical diseases 2: A bibliographic analysis

    Get PDF
    The official published version of the article can be found at the link below.Background There are strong arguments for social science and interdisciplinary research in the neglected tropical diseases. These diseases represent a rich and dynamic interplay between vector, host, and pathogen which occurs within social, physical and biological contexts. The overwhelming sense, however, is that neglected tropical diseases research is a biomedical endeavour largely excluding the social sciences. The purpose of this review is to provide a baseline for discussing the quantum and nature of the science that is being conducted, and the extent to which the social sciences are a part of that. Methods A bibliographic analysis was conducted of neglected tropical diseases related research papers published over the past 10 years in biomedical and social sciences. The analysis had textual and bibliometric facets, and focussed on chikungunya, dengue, visceral leishmaniasis, and onchocerciasis. Results There is substantial variation in the number of publications associated with each disease. The proportion of the research that is social science based appears remarkably consistent (<4%). A textual analysis, however, reveals a degree of misclassification by the abstracting service where a surprising proportion of the "social sciences" research was pure clinical research. Much of the social sciences research also tends to be "hand maiden" research focused on the implementation of biomedical solutions. Conclusion There is little evidence that scientists pay any attention to the complex social, cultural, biological, and environmental dynamic involved in human pathogenesis. There is little investigator driven social science and a poor presence of interdisciplinary science. The research needs more sophisticated funders and priority setters who are not beguiled by uncritical biomedical promises

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Towards a multisensor station for automated biodiversity monitoring

    Get PDF
    Rapid changes of the biosphere observed in recent years are caused by both small and large scale drivers, like shifts in temperature, transformations in land-use, or changes in the energy budget of systems. While the latter processes are easily quantifiable, documentation of the loss of biodiversity and community structure is more difficult. Changes in organismal abundance and diversity are barely documented. Censuses of species are usually fragmentary and inferred by often spatially, temporally and ecologically unsatisfactory simple species lists for individual study sites. Thus, detrimental global processes and their drivers often remain unrevealed. A major impediment to monitoring species diversity is the lack of human taxonomic expertise that is implicitly required for large-scale and fine-grained assessments. Another is the large amount of personnel and associated costs needed to cover large scales, or the inaccessibility of remote but nonetheless affected areas. To overcome these limitations we propose a network of Automated Multisensor stations for Monitoring of species Diversity (AMMODs) to pave the way for a new generation of biodiversity assessment centers. This network combines cutting-edge technologies with biodiversity informatics and expert systems that conserve expert knowledge. Each AMMOD station combines autonomous samplers for insects, pollen and spores, audio recorders for vocalizing animals, sensors for volatile organic compounds emitted by plants (pVOCs) and camera traps for mammals and small invertebrates. AMMODs are largely self-containing and have the ability to pre-process data (e.g. for noise filtering) prior to transmission to receiver stations for storage, integration and analyses. Installation on sites that are difficult to access require a sophisticated and challenging system design with optimum balance between power requirements, bandwidth for data transmission, required service, and operation under all environmental conditions for years. An important prerequisite for automated species identification are databases of DNA barcodes, animal sounds, for pVOCs, and images used as training data for automated species identification. AMMOD stations thus become a key component to advance the field of biodiversity monitoring for research and policy by delivering biodiversity data at an unprecedented spatial and temporal resolution. (C) 2022 Published by Elsevier GmbH on behalf of Gesellschaft fur Okologie
    corecore