88 research outputs found

    Judah Folkman, a pioneer in the study of angiogenesis

    Get PDF
    More than 30 years ago, Judah Folkman found a revolutionary new way to think about cancer. He postulated that in order to survive and grow, tumors require blood vessels, and that by cutting off that blood supply, a cancer could be starved into remission. What began as a revolutionary approach to cancer has evolved into one of the most exciting areas of scientific inquiry today. Over the years, Folkman and a growing team of researchers have isolated the proteins and unraveled the processes that regulate angiogenesis. Meanwhile, a new generation of angiogenesis research has emerged as well, widening the field into new areas of human disease and deepening it to examine the underlying biological processes responsible for those diseases

    Tipping the Balance: Robustness of Tip Cell Selection, Migration and Fusion in Angiogenesis

    Get PDF
    Vascular abnormalities contribute to many diseases such as cancer and diabetic retinopathy. In angiogenesis new blood vessels, headed by a migrating tip cell, sprout from pre-existing vessels in response to signals, e.g., vascular endothelial growth factor (VEGF). Tip cells meet and fuse (anastomosis) to form blood-flow supporting loops. Tip cell selection is achieved by Dll4-Notch mediated lateral inhibition resulting, under normal conditions, in an interleaved arrangement of tip and non-migrating stalk cells. Previously, we showed that the increased VEGF levels found in many diseases can cause the delayed negative feedback of lateral inhibition to produce abnormal oscillations of tip/stalk cell fates. Here we describe the development and implementation of a novel physics-based hierarchical agent model, tightly coupled to in vivo data, to explore the system dynamics as perpetual lateral inhibition combines with tip cell migration and fusion. We explore the tipping point between normal and abnormal sprouting as VEGF increases. A novel filopodia-adhesion driven migration mechanism is presented and validated against in vivo data. Due to the unique feature of ongoing lateral inhibition, ‘stabilised’ tip/stalk cell patterns show sensitivity to the formation of new cell-cell junctions during fusion: we predict cell fates can reverse. The fusing tip cells become inhibited and neighbouring stalk cells flip fate, recursively providing new tip cells. Junction size emerges as a key factor in establishing a stable tip/stalk pattern. Cell-cell junctions elongate as tip cells migrate, which is shown to provide positive feedback to lateral inhibition, causing it to be more susceptible to pathological oscillations. Importantly, down-regulation of the migratory pathway alone is shown to be sufficient to rescue the sprouting system from oscillation and restore stability. Thus we suggest the use of migration inhibitors as therapeutic agents for vascular normalisation in cancer

    Real-Time Visualization and Quantitation of Vascular Permeability In Vivo: Implications for Drug Delivery

    Get PDF
    The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were grown on the chorioallantoic membrane (CAM), a thin vascular membrane which overlays the growing chick embryo. The real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an interleukin-2 (IL-2) peptide fragment or vascular endothelial growth factor (VEGF). VEGF treatment increased vascular leak in the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be manipulated to improve chemotherapeutic targeting to tumors

    Tumor Endothelial Marker 8 Amplifies Canonical Wnt Signaling in Blood Vessels

    Get PDF
    Tumor Endothelial Marker 8/Anthrax Toxin Receptor 1 (TEM8/ANTXR1) expression is induced in the vascular compartment of multiple tumors and therefore, is a candidate molecule to target tumor therapies. This cell surface molecule mediates anthrax toxin internalization, however, its physiological function in blood vessels remains largely unknown. We identified the chicken chorioallantoic membrane (CAM) as a model system to study the endogenous function of TEM8 in blood vessels as we found that TEM8 expression was induced transiently between day 10 and 12 of embryonic development, when the vascular tree is undergoing final development and growth. We used the cell-binding component of anthrax toxin, Protective Antigen (PA), to engage endogenous TEM8 receptors and evaluate the effects of PA-TEM8 complexes on vascular development. PA applied at the time of highest TEM8 expression reduced vascular density and disrupted hierarchical branching as revealed by quantitative morphometric analysis of the vascular tree after 48h. PA-dependent reduced branching phenotype was partially mimicked by Wnt3a application and ameliorated by the Wnt antagonist, Dikkopf-1. These results implicate TEM8 expression in endothelial cells in regulating the canonical Wnt signaling pathway at this day of CAM development. Consistent with this model, PA increased beta catenin levels acutely in CAM blood vessels in vivo and in TEM8 transfected primary human endothelial cells in vitro. TEM8 expression in Hek293 cells, which neither express endogenous PA-binding receptors nor Wnt ligands, stabilized beta catenin levels and amplified beta catenin-dependent transcriptional activity induced by Wnt3a. This agonistic function is supported by findings in the CAM, where the increase in TEM8 expression from day 10 to day 12 and PA application correlated with Axin 2 induction, a universal reporter gene for canonical Wnt signaling. We postulate that the developmentally controlled expression of TEM8 modulates endothelial cell response to canonical Wnt signaling to regulate vessel patterning and density

    Topography of Extracellular Matrix Mediates Vascular Morphogenesis and Migration Speeds in Angiogenesis

    Get PDF
    The extracellular matrix plays a critical role in orchestrating the events necessary for wound healing, muscle repair, morphogenesis, new blood vessel growth, and cancer invasion. In this study, we investigate the influence of extracellular matrix topography on the coordination of multi-cellular interactions in the context of angiogenesis. To do this, we validate our spatio-temporal mathematical model of angiogenesis against empirical data, and within this framework, we vary the density of the matrix fibers to simulate different tissue environments and to explore the possibility of manipulating the extracellular matrix to achieve pro- and anti-angiogenic effects. The model predicts specific ranges of matrix fiber densities that maximize sprout extension speed, induce branching, or interrupt normal angiogenesis, which are independently confirmed by experiment. We then explore matrix fiber alignment as a key factor contributing to peak sprout velocities and in mediating cell shape and orientation. We also quantify the effects of proteolytic matrix degradation by the tip cell on sprout velocity and demonstrate that degradation promotes sprout growth at high matrix densities, but has an inhibitory effect at lower densities. Our results are discussed in the context of ECM targeted pro- and anti-angiogenic therapies that can be tested empirically

    Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    Get PDF
    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Species-specific regulation of angiogenesis by glucocorticoids reveals contrasting effects on inflammatory and angiogenic pathways

    Get PDF
    <div><p>Glucocorticoids are potent inhibitors of angiogenesis in the rodent <i>in vivo</i> and <i>in vitro</i> but the mechanism by which this occurs has not been determined. Administration of glucocorticoids is used to treat a number of conditions in horses but the angiogenic response of equine vessels to glucocorticoids and, therefore, the potential role of glucocorticoids in pathogenesis and treatment of equine disease, is unknown. This study addressed the hypothesis that glucocorticoids would be angiostatic both in equine and murine blood vessels.The mouse aortic ring model of angiogenesis was adapted to assess the effects of cortisol in equine vessels. Vessel rings were cultured under basal conditions or exposed to: foetal bovine serum (FBS; 3%); cortisol (600 nM), cortisol (600nM) plus FBS (3%), cortisol (600nM) plus either the glucocorticoid receptor antagonist RU486 or the mineralocorticoid receptor antagonist spironolactone. In murine aortae cortisol inhibited and FBS stimulated new vessel growth. In contrast, in equine blood vessels FBS alone had no effect but cortisol alone, or in combination with FBS, dramatically increased new vessel growth compared with controls. This effect was blocked by glucocorticoid receptor antagonism but not by mineralocorticoid antagonism. The transcriptomes of murine and equine angiogenesis demonstrated cortisol-induced down-regulation of inflammatory pathways in both species but up-regulation of pro-angiogenic pathways selectively in the horse. Genes up-regulated in the horse and down-regulated in mice were associated with the extracellular matrix. These data call into question our understanding of glucocorticoids as angiostatic in every species and may be of clinical relevance in the horse.</p></div
    corecore