120 research outputs found

    Enantiomeric methadone quantitation on real post-mortem dried matrix spots samples: Comparison of liquid chromatography and supercritical fluid chromatography coupled to mass spectrometry.

    Get PDF
    This study describes two bioanalytical methods for the quantitation of the two methadone enantiomers in dried matrix spots using high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) and high performance supercritical chromatography tandem mass spectrometry (HPSFC-MS/MS). Dried matrix spots were obtained by spotting 10 µL of each sample fluid on a Whatman paper. Methadone and its main metabolite, EDDP, were extracted with 100 µL methanol and subsequently injected into the LC-MS/MS and SFC-MS/MS systems. Enantiomeric separation was achieved with AGP-column for the LC conditions and with Chiralpak IH-3 in SFC. The two methods were fully validated and 93 post-mortem samples were analysed with both analytical methods. Results from validation parameters and results obtained for all post-mortem samples were compared with a significant spearman correlation of r <sub>s</sub> = 0.9978 for R-methadone and r <sub>s</sub> = 0.9981 for S-methadone. The LC method provided better results in terms of uncertainty, retention factor and resolution, whereas SFC provides better sensitivity, with lower LOD. Median R-/S-methadone ratio in peripheral blood was found equal to 1.60 (N = 32), varying from 0.79 to 4.23. The reported values were in good agreement with previously published results. Based on the results obtained here, SFC-MS/MS can be considered a reliable alternative to the widely used LC-MS/MS for the quantitation of methadone enantiomers in bioanalysis and should be evaluated for other bioanalytical methods. Both methods can be easily and quickly used in toxicological routine analysis for the methadone quantitation in human fluids matrices, even if considering that the polysaccharide coated column IH-3 used in SFC does not allow the enantiomeric EDDP separation

    Innovative methodology to transfer conventional GC-MS heroin profiling to UHPLC-MS/MS

    Get PDF
    Nowadays, in forensic laboratories, heroin profiling is frequently carried out by gas chromatography coupled with mass spectrometry (GC-MS). This analytical technique is well established, provides good sensitivity and reproducibility, and allows the use of large databases. Despite those benefits, recently introduced analytical techniques, such as ultra-high-pressure liquid chromatography (UHPLC), could offer better chromatographic performance, which needs to be considered to increase the analysis throughput for heroin profiling. With the latter, chromatographic conditions were optimized through commercial modeling software and two atmospheric pressure ionization sources were evaluated. Data obtained from UHPLC-MS/MS were thus transferred, thanks to mathematical models to mimic GC-MS data. A calibration and a validation set of representative heroin samples were selected among the database to establish a transfer methodology and assess the models' abilities to transfer using principal component analysis and hierarchical classification analysis. These abilities were evaluated by computing the frequency of successful classification of UHPLC-MS/MS data among GC-MS database. Seven mathematical models were tested to adjust UHPLC-MS/MS data to GC-MS data. A simplified mathematical model was finally selected and offered a frequency of successful transfer equal to 95%. Figur

    New trends in fast liquid chromatography for food and environmental analysis

    Full text link

    Use of individual retention modeling for gradient optimization in hydrophilic interaction chromatography: Separation of nucleobases and nucleosides

    Full text link
    In this study, the separation of twelve nucleobases and nucleosides was optimized via chromatogram simulation (i.e., prediction of individual retention times and estimation of the peak widths) with the use of an empirical (reversed-phase) non-linear model proposed by Neue and Kuss. Retention time prediction errors of less than 2% were observed for all compounds on different stationary phases. As a single HILIC column could not resolve all peaks, the modeling was extended to coupled-column systems (with different stationary phase chemistries) to increase the separation efficiency and selectivity. The analytical expressions for the gradient retention factor on a coupled column system were derived and accurate retention time predictions were obtained (<2% prediction errors in general). The optimized gradient (predicted by the optimization software) included coupling of an amide and an pentahydroxy functionalized silica stationary phases with a gradient profile from 95 to 85%ACN in 6. min and resulted in almost baseline separation of the twelve nucleobases and nucleosides in less than 7. min. The final separation was obtained in less than 4. h of instrument time (including equilibration times) and was fully obtained via computer-based optimization. As such, this study provides an example of a case where individual retention modeling can be used as a way to optimize the gradient conditions in the HILIC mode using a non-linear model such as the Neue and Kuss model. © 2014 Elsevier B.V

    Characterization of cation exchanger stationary phases applied for the separations of therapeutic monoclonal antibodies.

    No full text
    Cation exchange chromatography (CEX) is a well established strategy for the characterization of monoclonal antibodies (mAbs). The optimization of mobile phase conditions is well described in the literature, but there is a lack of information about CEX stationary phases for the analysis of therapeutic proteins. The aim of this study was to compare five state-of-the-art CEX stationary phases based on the retention, selectivity and resolving power achieved in pH- and salt-gradient modes, with various therapeutic mAbs and their variants. The Sepax Antibodix WCX-NP3, Thermo MAbPac SCX-10 RS, YMC BioPro SP-F, Waters Protein-Pak Hi Res SP and Agilent Bio mAb NP1.7 SS were considered in this study. In terms of retention, the YMC Bio Pro SP-F material was the less retentive one, while the Agilent Bio mAb NP1.7 SS provides the highest retention. Regarding the selectivity achieved between the main mAbs isoforms and their variants, the Thermo MabPac SCX column generally gave the highest selectivity. Finally, it was hard to rank columns in term of kinetic performance since their performance is strongly solute (mAb) and elution mode (pH or salt gradient) dependent. However, the highest resolution--in most cases--was observed on the strong cation exchanger YMC Bio Pro SP-F material
    corecore