585 research outputs found

    Full configuration interaction calculation of singlet excited states of Be3

    Get PDF
    The full configuration interaction (FCI) study of the singlets vertical spectrum of the neutral beryllium trimer has been performed using atomic natural orbitals [3s2p1d] basis set. The FCI triangular equilibrium structure of the ground state has been used to calculate the FCI vertical excitation energies up to 4.8 eV. The FCI vertical ionization potential for the same geometry and basis set amounts to 7.6292 eV. The FCI dipole and quadrupole transition moments from the ground state are reported as well. The FCI electric quadrupole moment of the X 3A1′ ground state has been also calculated with the same basis set (Θzz = −2.6461 a.u., Θxx = Θyy = −1/2Θzz). Twelve of the 19 calculated excited singlets are doubly excited states. Most of the states have large multiconfigurational character. These results provide benchmark values for electronic correlation multireference methods. (4e×6MO)CAS-SDCI values for the same energies and properties are also [email protected]

    Experimental Analysis of the Thermal Performance of Wood Fiber Insulating Panels

    Get PDF
    During the last decades, attention to energy and environmental problems has significantly grown, along with the development of international and national policies addressing sustainability issues. In the construction sector, one of the most widespread energy efficiency strategies consists of thermal insulation of buildings thanks to external insulating panels. Among these, wood fiber is an insulating material characterized by a natural, eco-sustainable and biodegradable structure, coming from the recycling of waste wood from sawmills. The present study aimed to characterize small test building insulated with wood fiber panels from the thermal point of view, comparing the results with those of an identical, non-insulated reference test building. The experimental campaign highlighted several advantages and an excellent thermal performance provided by the eco-sustainable solution of wood fiber insulating panels: Lower values of the thermal transmittance (-57%), thus ensuring greater stability of the internal air temperature and better values in terms of attenuation (-60% in summer and -74 % in winter) and phase shift (+2 h in summer and +2.28 h in winter) compared to those obtained from the reference building. The material is also equipped with an Environmental Performance Declaration (EPD) that certifies its environmental benefits

    A probabilistic approach to the evaluation of seismic resilience in road asset management

    Get PDF
    Road networks are classified as critical infrastructure systems. Their loss of functionality not only hinders residential and commercial activities, but also compromises evacuation and rescue after disasters. Dealing with risks to key strategic objectives is not new to asset management, and risk management is considered one of the core elements of asset management. Risk analysis has recently focused on understanding and designing strategies for resilience, especially in the case of seismic events that present a significant hazard to highway transportation networks. Following a review of risk and resilience concepts and metrics, an innovative methodology to stochastically assess the economic resources needed to restore damaged infrastructures, one that is a relevant and complementary element within a wider resilience-based framework, is proposed. The original methodology is based on collecting and analyzing ex post reconstruction and hazard data and was calibrated on data measured during the earthquake that struck central Italy in 2016 and collected in the following recovery phase. Although further improvements are needed, the proposed approach can be used effectively by road managers to provide useful information in developing seismic retrofitting plans

    Molecular prototypes for spin-based CNOT quantum gates

    Get PDF
    We show that a chemically engineered structural asymmetry in [Tb2] molecular clusters renders the two weakly coupled Tb3+ spin qubits magnetically inequivalent. The magnetic energy level spectrum of these molecules meets then all conditions needed to realize a universal CNOT quantum gate.Comment: 4 pages, 4 figure

    Searching for biosignatures by their rotational spectrum: global fit and methyl group internal rotation features of dimethylsulphoxide up to 116 GHz

    Get PDF
    The identification and quantification of molecules in interstellar space and atmospheres of planets in the solar systems and in exoplanets rely on spectroscopicmethods and laboratory work is essential to provide the community with the spectral features needed to analyse cosmological observations. Rotational spectroscopy in particular, with its intrinsic high resolution, allows the unambiguous identification of biomolecular building blocks and biosignature gases which can be correlated with the origin of life or the identification of habitable planets.We report the extension of the measured rotational transition frequencies of dimethylsulphoxide and its 34S and 13C isotopologues in the millimetrewave range (59.6–78.4 GHz) by use of an absorption spectrometer based on the supersonic expansion technique. Hyperfine patterns related to the methyl group internal rotation were analysed in the microwave range region (6–18 GHz) with a Pulsed Jet Fourier Transform spectrometer at extremely high resolution (2 kHz) and reliable predictions up to 116 GHz are provided. The focus on sulphur-bearing molecules is motivated by the fact that sulphur is largely involved in the intra- and inter-molecular hydrogen bonds in proteins and although it is the 10th most abundant element in the known Universe, understanding its chemistry is still amatter of debate.Moreover, sulphur-bearingmolecules, in particular dimethylsulphoxide, have been indicated as possible biosignature gases to be monitored in the search of habitable exoplanets

    Tunable dipolar magnetism in high-spin molecular clusters

    Get PDF
    We report on the Fe17 high-spin molecular cluster and show that this system is an exemplification of nanostructured dipolar magnetism. Each Fe17 molecule, with spin S=35/2 and axial anisotropy as small as D=-0.02K, is the magnetic unit that can be chemically arranged in different packing crystals whilst preserving both spin ground-state and anisotropy. For every configuration, molecular spins are correlated only by dipolar interactions. The ensuing interplay between dipolar energy and anisotropy gives rise to macroscopic behaviors ranging from superparamagnetism to long-range magnetic order at temperatures below 1K.Comment: Replaced with version accepted for publication in Physical Review Letter

    Design of a multi-purpose building "to zero energy consumption" according to european directive 2010/31/ce: Architectural and plant solutions

    Get PDF
    Considering the significant impact that the residential sector has on energy consumption, it is particularly important to implement policies aimed at improving energy efficiency in buildings for saving primary energy, and also to spread the concept of sustainable development through the use of appropriate technology and proper project criteria for new constructions. For these reasons the Municipality of Città della Pieve promoted the creation of a "Renewable Energy Park" in a deprived area of its territory, so that there were the main technologies for the production of green energy. In this context, it could not be lacking an educational/demonstrative "zero energy consumption" building for multifunctional activities realized with the most innovative techniques to save energy. The building will exemplify the optimization of the benefits derived from improved energy efficiency in synergy with systems of energy production from renewable sources, such as to make possible the transition from "passive" building to get to "active" building. In this paper we describe the technical solutions adopted both in the building envelope and the system concept for the project of that "zero energy consumption" building according to Directive 2010/31/CE. In order to validate the proposed solutions, it has also been carried out a simulation of the behaviour of the building in summer and winter so that it is possible to assess the actual benefits obtained both in terms of energy and in economic terms following the adoption of the proposed solutions

    Effect of Carbon Support, Capping Agent Amount, and Pd NPs Size for Bio-Adipic Acid Production from Muconic Acid and Sodium Muconate

    Get PDF
    The effect of support, stabilizing agent, and Pd nanoparticles (NPs) size was studied for sodium muconate and t,t-muconic acid hydrogenation to bio-adipic acid. Three different activated carbons (AC) were used (Norit, KB, and G60) and carbon morphology did not affect the substrate conversion, but it greatly influenced the adipic acid yield. 1% Pd/KB Darco catalyst, which has the highest surface area and Pd surface exposure, and the smallest NPs size displayed the highest activity. Furthermore, the effect of the amount of the protective agent was studied varying metal/protective agent weight ratios in the range of 1/0.00-1/1.20, using KB as the chosen support. For sodium muconate reduction 1% Pd/KB_1.2 catalyst gave the best results in terms of activity (0.73 s-1), conversion, and adipic acid yield (94.8%), while for t,t-muconic acid hydrogenation the best activity result (0.85 s-1) was obtained with 1% Pd/KB_0.0 catalyst. Correlating the results obtained from XPS and TEM analyses with catalytic results, we found that the amount of PVA (polyvinyl alcohol) influences mean Pd NPs size, Pd(0)/Pd(II) ratio, and Pd surface exposure. Pd(0)/Pd(II) ratio and Pd NPs size affected adipic acid yield and activity during sodium muconate hydrogenation, respectively, while adipic acid yield was related by exposed Pd amount during t,t-muconic acid hydrogenation. The synthesized catalysts showed higher activity than commercial 5% Pd/AC

    Size-consistent self-consistent configuration interaction from a complete active space : Excited states

    Get PDF
    The self-consistent size consistent on a complete active space singly and doubly configuration interaction (SC)2CAS-SDCI method is applied to excited states. The (SC)2 correction is performed on a closed shell state, and the excited states are obtained by diagonalization of the dressed matrix. A theoretical justification of the transferability of the improvement concerning the dressing state to all roots of the matrix is presented. The method is tested by three tests on the spectrum of small [email protected] ; [email protected]

    Magnetic and thermal properties of 4f-3d ladder-type molecular compounds

    Full text link
    We report on the low-temperature magnetic susceptibilities and specific heats of the isostructural spin-ladder molecular complexes L2_{2}[M(opba)]_{3\cdot xDMSOy\cdot yH2_{2}O, hereafter abbreviated with L2_{2}M3_{3} (where L = La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing complexes (with the exception of La2_{2}Cu3_{3}) undergo long range magnetic order at temperatures below 2 K, and that for Gd2_{2}Cu3_{3} this ordering is ferromagnetic, whereas for Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} it is probably antiferromagnetic. The susceptibilities and specific heats of Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} above TCT_{C} have been explained by means of a model taking into account nearest as well as next-nearest neighbor magnetic interactions. We show that the intraladder L--Cu interaction is the predominant one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy and Ho containing complexes, strong crystal field effects on the magnetic and thermal properties have to be taken into account. The magnetic coupling between the (ferromagnetic) ladders is found to be very weak and is probably of dipolar origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.
    corecore