152 research outputs found

    Towards the production of radiotherapy treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility studies

    Get PDF
    Background: Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be distressing for patients and the shells do not always fit perfectly. In addition the mould room process can be time consuming. With recent developments in three-dimensional (3D) printing technologies comes the potential to generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring radiotherapy treatment will have had a computed tomography (CT) scan and if a computer model of a shell could be obtained directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and possibly enable the patient to start their radiotherapy treatment more quickly. Purpose: This paper focuses on the first stage of generating the front part of the shell and investigates the dosimetric properties of the materials to show the feasibility of 3D printer materials for the production of a radiotherapy treatment shell. Materials and methods: Computer algorithms are used to segment the surface of the patient’s head from CT and MRI datasets. After segmentation approaches are used to construct a 3D model suitable for printing on a 3D printer. To ensure that 3D printing is feasible the properties of a set of 3D printing materials are tested. Conclusions: The majority of the possible candidate 3D printing materials tested result in very similar attenuation of a therapeutic radiotherapy beam as the Orfit soft-drape masks currently in use in many UK radiotherapy centres. The costs involved in 3D printing are reducing and the applications to medicine are becoming more widely adopted. In this paper we show that 3D printing of bespoke radiotherapy masks is feasible and warrants further investigation

    Impaired high-density lipoprotein function in patients with heart failure

    Get PDF
    Background: We recently showed that, in patients with heart failure, lower high‐density lipoprotein (HDL) cholesterol concentration was a strong predictor of death or hospitalization for heart failure. In a follow‐up study, we suggested that this association could be partly explained by HDL proteome composition. However, whether the emerging concept of HDL function contributes to the prognosis of patients with heart failure has not been addressed. Methods and Results: We measured 3 key protective HDL function metrics, namely, cholesterol efflux, antioxidative capacity, and anti‐inflammatory capacity, at baseline and after 9 months in 446 randomly selected patients with heart failure from BIOSTAT‐CHF (A Systems Biology Study to Tailored Treatment in Chronic Heart Failure). Additionally, the relationship between HDL functionality and HDL proteome composition was determined in 86 patients with heart failure. From baseline to 9 months, HDL cholesterol concentrations were unchanged, but HDL cholesterol efflux and anti‐inflammatory capacity declined (both P<0.001). In contrast, antioxidative capacity increased (P<0.001). Higher HDL cholesterol efflux was associated with lower mortality after adjusting for BIOSTAT‐CHF risk models and log HDL cholesterol (hazard ratio, 0.81; 95% CI, 0.71–0.92; P=0.001). Other functionality measures were not associated with outcome. Several HDL proteins correlated with HDL functionality, mainly with cholesterol efflux. Apolipoprotein A1 emerged as the main protein associated with all 3 HDL functionality measures. Conclusions: Better HDL cholesterol efflux at baseline was associated with lower mortality during follow‐up, independent of HDL cholesterol. HDL cholesterol efflux and anti‐inflammatory capacity declined during follow‐up in patients with heart failure. Measures of HDL function may provide clinical information in addition to HDL cholesterol concentration in patients with heart failure

    Assessment of Proximal Tubular Function by Tubular Maximum Phosphate Reabsorption Capacity in Heart Failure

    Get PDF
    BACKGROUND AND OBJECTIVES: The estimated glomerular filtration rate (eGFR) is a crucial parameter in heart failure. Much less is known about the importance of tubular function. We addressed the effect of tubular maximum phosphate reabsorption capacity (TmP/GFR), a parameter of proximal tubular function, in patients with heart failure.DESIGN, SETTING, PARTICIPANTS, &amp; MEASUREMENTS: We established TmP/GFR (Bijvoet formula) in 2085 patients with heart failure and studied its association with deterioration of kidney function (&gt;25% eGFR decrease from baseline) and plasma neutrophil gelatinase-associated lipocalin (NGAL) doubling (baseline to 9 months) using logistic regression analysis and clinical outcomes using Cox proportional hazards regression. Additionally, we evaluated the effect of sodium-glucose transport protein 2 (SGLT2) inhibition by empagliflozin on tubular maximum phosphate reabsorption capacity in 78 patients with acute heart failure using analysis of covariance.RESULTS: Low TmP/GFR (&lt;0.80 mmol/L) was observed in 1392 (67%) and 21 (27%) patients. Patients with lower TmP/GFR had more advanced heart failure, lower eGFR, and higher levels of tubular damage markers. The main determinant of lower TmP/GFR was higher fractional excretion of urea (P&lt;0.001). Lower TmP/GFR was independently associated with higher risk of plasma NGAL doubling (odds ratio, 2.20; 95% confidence interval, 1.05 to 4.66; P=0.04) but not with deterioration of kidney function. Lower TmP/GFR was associated with higher risk of all-cause mortality (hazard ratio, 2.80; 95% confidence interval, 1.37 to 5.73; P=0.005), heart failure hospitalization (hazard ratio, 2.29; 95% confidence interval, 1.08 to 4.88; P=0.03), and their combination (hazard ratio, 1.89; 95% confidence interval, 1.07 to 3.36; P=0.03) after multivariable adjustment. Empagliflozin significantly increased TmP/GFR compared with placebo after 1 day (P=0.004) but not after adjustment for eGFR change.CONCLUSIONS: TmP/GFR, a measure of proximal tubular function, is frequently reduced in heart failure, especially in patients with more advanced heart failure. Lower TmP/GFR is furthermore associated with future risk of plasma NGAL doubling and worse clinical outcomes, independent of glomerular function.</p

    Albuminuria as a marker of systemic congestion in patients with heart failure

    Get PDF
    International audienceAbstract Aims Albuminuria is common in patients with heart failure and associated with worse outcomes. The underlying pathophysiological mechanism of albuminuria in heart failure is still incompletely understood. The association of clinical characteristics and biomarker profile with albuminuria in patients with heart failure with both reduced and preserved ejection fractions were evaluated. Methods and results Two thousand three hundred and fifteen patients included in the index cohort of BIOSTAT-CHF were evaluated and findings were validated in the independent BIOSTAT-CHF validation cohort (1431 patients). Micro-albuminuria and macro-albuminuria were defined as urinary albumin–creatinine ratio (UACR) &gt;30 mg/gCr and &gt;300 mg/gCr in spot urines, respectively. The prevalence of micro- and macro-albuminuria was 35.4% and 10.0%, respectively. Patients with albuminuria had more severe heart failure, as indicated by inclusion during admission, higher New York Heart Association functional class, more clinical signs and symptoms of congestion, and higher concentrations of biomarkers related to congestion, such as biologically active adrenomedullin, cancer antigen 125, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) (all P &lt; 0.001). The presence of albuminuria was associated with increased risk of mortality and heart failure (re)hospitalization in both cohorts. The strongest independent association with log UACR was found for log NT-proBNP (standardized regression coefficient 0.438, 95% confidence interval 0.35–0.53, P &lt; 0.001). Hierarchical clustering analysis demonstrated that UACR clusters with markers of congestion and less with indices of renal function. The validation cohort yielded similar findings. Conclusion In patients with new-onset or worsening heart failure, albuminuria is consistently associated with clinical, echocardiographic, and circulating biomarkers of congestion

    Titanium based cranial reconstruction using incremental sheet forming

    Get PDF
    In this paper, we report recent work in cranial plate manufacturing using incremental sheet forming (ISF) process. With a typical cranial shape, the ISF process was used to manufacture the titanium cranial shape by using different ISF tooling solutions with and without backing plates. Detailed evaluation of the ISF process including material deformation and thinning, geometric accuracy and surface finish was conducted by using a combination of experimental testing and Finite Element (FE) simulation. The results show that satisfactory cranial shape can be achieved with sufficient accuracy and surface finish by using a feature based tool path generation method and new ISF tooling design. The results also demonstrate that the ISF based cranial reconstruction has the potential to achieve considerable lead time reduction as compared to conventional methods for cranial plate manufacturing. This outcome indicates that there is a potential for the ISF process to achieve technological advances and economic benefits as well as improvement to quality of life

    Review on the influence of process parameters in incremental sheet forming

    Get PDF
    Incremental sheet forming (ISF) is a relatively new flexible forming process. ISF has excellent adaptability to conventional milling machines and requires minimum use of complex tooling, dies and forming press, which makes the process cost-effective and easy to automate for various applications. In the past two decades, extensive research on ISF has resulted in significant advances being made in fundamental understanding and development of new processing and tooling solutions. However, ISF has yet to be fully implemented to mainstream high-value manufacturing industries due to a number of technical challenges, all of which are directly related to ISF process parameters. This paper aims to provide a detailed review of the current state-of-the-art of ISF processes in terms of its technological capabilities and specific limitations with discussions on the ISF process parameters and their effects on ISF processes. Particular attention is given to the ISF process parameters on the formability, deformation and failure mechanics, springback and accuracy and surface roughness. This leads to a number of recommendations that are considered essential for future research effort

    The influence of atrial fibrillation on the levels of NT-proBNP versus GDF-15 in patients with heart failure

    Get PDF
    In heart failure (HF), levels of NT-proBNP are influenced by the presence of concomitant atrial fibrillation (AF), making it difficult to distinguish between HF versus AF in patients with raised NT-proBNP. It is unknown whether levels of GDF-15 are also influenced by AF in patients with HF. In this study we compared the plasma levels of NT-proBNP versus GDF-15 in patients with HF in AF versus sinus rhythm (SR)

    Evaluation of strain and stress states in the single point incremental forming process

    Get PDF
    Single point incremental forming (SPIF) is a promising manufacturing process suitable for small batch production. Furthermore, the material formability is enhanced in comparison with the conventional sheet metal forming processes, resulting from the small plastic zone and the incremental nature. Nevertheless, the further development of the SPIF process requires the full understanding of the material deformation mechanism, which is of great importance for the effective process optimization. In this study, a comprehensive finite element model has been developed to analyse the state of strain and stress in the vicinity of the contact area, where the plastic deformation increases by means of the forming tool action. The numerical model is firstly validated with experimental results from a simple truncated cone of AA7075-O aluminium alloy, namely, the forming force evolution, the final thickness and the plastic strain distributions. In order to evaluate accurately the through-thickness gradients, the blank is modelled with solid finite elements. The small contact area between the forming tool and the sheet produces a negative mean stress under the tool, postponing the ductile fracture occurrence. On the other hand, the residual stresses in both circumferential and meridional directions are positive in the inner skin of the cone and negative in the outer skin. They arise predominantly along the circumferential direction due to the geometrical restrictions in this direction.The authors would like to gratefully acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) under project PTDC/EMS-TEC/1805/2012. The first author is also grateful to the FCT for the postdoctoral grant SFRH/BPD/101334/2014.info:eu-repo/semantics/publishedVersio

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
    corecore