23,504 research outputs found
USB environment measurements based on full-scale static engine ground tests
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons
On the existence of impurity bound excitons in one-dimensional systems with zero range interactions
We consider a three-body one-dimensional Schr\"odinger operator with zero
range potentials, which models a positive impurity with charge
interacting with an exciton. We study the existence of discrete eigenvalues as
is varied. On one hand, we show that for sufficiently small
there exists a unique bound state whose binding energy behaves like ,
and we explicitly compute its leading coefficient. On the other hand, if
is larger than some critical value then the system has no bound
states
A generalized virial theorem and the balance of kinetic and potential energies in the semiclassical limit
We obtain two-sided bounds on kinetic and potential energies of a bound state
of a quantum particle in the semiclassical limit, as the Planck constant
\hbar\ri 0.
Proofs of these results rely on the generalized virial theorem obtained in
the paper as well as on a decay of eigenfunctions in the classically forbidden
region
Parasitism, Adult Emergence, Sex Ratio, and Size of \u3ci\u3eAphidius Colemani\u3c/i\u3e (Hymenoptera: Aphidiidae) on Several Aphid Species
Aphidius colemani Viereck parasitizes several economically important aphid pests of small grain crops including the greenbug, Schizaphis graminum and the Russian wheat aphid, Diuraphis noxia. The ability of A. colemani to switch from S. graminum to several species of aphids common to agricultural and associated non-agricultural ecosystems in the Great Plains, and the effects of host-change on several biological parameters that influence population growth rate were determined. Female A. colemani parasitized and developed to adulthood in nine of 14 aphid species to which they were exposed in the laboratory. All small grain feeding aphids except Sipha flava were parasitized. Two sunflower feeding species (Aphis nerii and A. helianthi) and two crucifer feeding species (Lipaphis erysimi and Brevicoryne brassicae) were parasitized, as was the cotton aphid. Aphis gossypii. The average percentage of aphids parasitized differed significantly among host aphid species. as did the percentage of parasitoids surviving from the mummy to the adult stage and the time required for immature development. The sex ratio of adults that enclosed from the various hosts did not differ significantly among species. Dry weights of adult parasitoids differed significantly among host species. Adults from S. graminum weighed most (0.054 mg) while those emerging from A. helianthi weighed least (0.020 mg). Results are discussed in terms of strategies for classical biological control of aphid pests of cereals
Toward an accurate mass function for precision cosmology
Cosmological surveys aim to use the evolution of the abundance of galaxy
clusters to accurately constrain the cosmological model. In the context of
LCDM, we show that it is possible to achieve the required percent level
accuracy in the halo mass function with gravity-only cosmological simulations,
and we provide simulation start and run parameter guidelines for doing so. Some
previous works have had sufficient statistical precision, but lacked robust
verification of absolute accuracy. Convergence tests of the mass function with,
for example, simulation start redshift can exhibit false convergence of the
mass function due to counteracting errors, potentially misleading one to infer
overly optimistic estimations of simulation accuracy. Percent level accuracy is
possible if initial condition particle mapping uses second order Lagrangian
Perturbation Theory, and if the start epoch is between 10 and 50 expansion
factors before the epoch of halo formation of interest. The mass function for
halos with fewer than ~1000 particles is highly sensitive to simulation
parameters and start redshift, implying a practical minimum mass resolution
limit due to mass discreteness. The narrow range in converged start redshift
suggests that it is not presently possible for a single simulation to capture
accurately the cluster mass function while also starting early enough to model
accurately the numbers of reionisation era galaxies, whose baryon feedback
processes may affect later cluster properties. Ultimately, to fully exploit
current and future cosmological surveys will require accurate modeling of
baryon physics and observable properties, a formidable challenge for which
accurate gravity-only simulations are just an initial step.Comment: revised in response to referee suggestions, MNRAS accepte
A Number-Theoretic Error-Correcting Code
In this paper we describe a new error-correcting code (ECC) inspired by the
Naccache-Stern cryptosystem. While by far less efficient than Turbo codes, the
proposed ECC happens to be more efficient than some established ECCs for
certain sets of parameters. The new ECC adds an appendix to the message. The
appendix is the modular product of small primes representing the message bits.
The receiver recomputes the product and detects transmission errors using
modular division and lattice reduction
Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal
Global climate change is likely to constrain low latitude range edges across many taxa and habitats. Such is the case for NE Atlantic marine macroalgal forests, important ecosystems whose main structuring species is the annual kelp Saccorhiza polyschides. We coupled ecological niche modelling with simulations of potential dispersal and delayed development stages to infer the major forces shaping range edges and to predict their dynamics. Models indicated that the southern limit is set by high winter temperatures above the physiological tolerance of overwintering microscopic stages and reduced upwelling during recruitment. The best range predictions were achieved assuming low spatial dispersal (5 km) and delayed stages up to two years (temporal dispersal). Reconstructing distributions through time indicated losses of similar to 30% from 1986 to 2014, restricting S. polyschides to upwelling regions at the southern edge. Future predictions further restrict populations to a unique refugium in northwestern Iberia. Losses were dependent on the emissions scenario, with the most drastic one shifting similar to 38% of the current distribution by 2100. Such distributional changes might not be rescued by dispersal in space or time (as shown for the recent past) and are expected to drive major biodiversity loss and changes in ecosystem functioning.Electricity of Portugal (Fundo EDP para a Biodiversidade); FCT - Portuguese Science Foundation [PTDC/MAR-EST/6053/2014, EXTANT-EXCL/AAG-GLO/0661/2012, SFRH/BPD/111003/2015
The problem of deficiency indices for discrete Schr\"odinger operators on locally finite graphs
The number of self-adjoint extensions of a symmetric operator acting on a
complex Hilbert space is characterized by its deficiency indices. Given a
locally finite unoriented simple tree, we prove that the deficiency indices of
any discrete Schr\"odinger operator are either null or infinite. We also prove
that almost surely, there is a tree such that all discrete Schr\"odinger
operators are essentially self-adjoint. Furthermore, we provide several
criteria of essential self-adjointness. We also adress some importance to the
case of the adjacency matrix and conjecture that, given a locally finite
unoriented simple graph, its the deficiency indices are either null or
infinite. Besides that, we consider some generalizations of trees and weighted
graphs.Comment: Typos corrected. References and ToC added. Paper slightly
reorganized. Section 3.2, about the diagonalization has been much improved.
The older section about the stability of the deficiency indices in now in
appendix. To appear in Journal of Mathematical Physic
- …