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The number of self-adjoint extensions of a symmetric operator acting on a complex
Hilbert space is characterized by its deficiency indices. Given a locally finite unori-
ented simple tree, we prove that the deficiency indices of any discrete Schrödinger
operator are either null or infinite. We also prove that all deterministic discrete
Schrödinger operators which act on a random tree are almost surely self-adjoint. Fur-
thermore, we provide several criteria of essential self-adjointness. We also address
some importance to the case of the adjacency matrix and conjecture that, given a
locally finite unoriented simple graph, its deficiency indices are either null or infinite.
Besides that, we consider some generalizations of trees and weighted graphs. C© 2011
American Institute of Physics. [doi:10.1063/1.3596179]

I. INTRODUCTION

The spectral theory of adjacency matrices acting on graphs is useful for the study, among others,
of some gelling polymers, of some electrical networks, and in number theory, e.g., Refs. 7–9, and
16. In quantum physics, proving that a symmetric operator is self-adjoint is a central problem. To
characterize all the possible extensions, one studies the so-called deficiency indices.

We start with some definitions to fix notation for graphs and refer to Refs. 4,5, and 17 for surveys
on the matter. Let V be a countable set. We equip V with the discrete topology. Let E := V × V →
[0,∞) and assume that E(x, y) = E(y, x), for all x, y ∈ V . We say that G := (E, V ) is an unoriented
weighted graph with vertices V and weights E . In the setting of electrical networks, the weights
correspond to the conductances. We say that x, y ∈ V are neighbors if E(x, y) �= 0 and denote it by
x ∼ y. We say there is a loop in x ∈ V if E(x, x) �= 0. A graph G is simple if it has no loops and E
has values in {0, 1}. The set of neighbors of x ∈ E is denoted by NG(x) := {y ∈ E | x ∼ y}. Given
X ⊆ V we write NG(X ) := ⋃

x∈X NG(x). The degree of x ∈ V is by definition dG(x) := |NG(x)|,
the number of neighbors of x . The graph is of bounded degree, if supx∈V dG(x) is finite. A graph
is locally finite if dG(x) is finite for all x ∈ V . A graph is connected, if for all x, y ∈ V , there
exists an x-y-path, i.e., there is a finite sequence (x1, . . . , xn) ∈ V N+1 such that x1 = x , xN+1 = y
and xn ∼ xn+1, for all n ∈ {1, . . . , N }. In this case, we endow V with the metric ρV defined by
ρV (x, y) := inf{n ∈ N | there exists an x-y-path of length n}. Note that in this paper we use N for
the set of nonpositive integers, i.e., 0 ∈ N. In the sequel, all graphs are supposed to be locally finite,
with no loops and unoriented.

We associate to G the complex Hilbert space �2(V ). We denote by 〈·, ·〉 and by ‖ · ‖ the scalar
product and the associated norm, respectively. By abuse of notation, we denote the space simply
by �2(G). The set of complex functions with compact support in V is denoted by Cc(G). One often
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considers the Laplacian defined by

(�G,◦ f )(x) :=
∑
y∼x

E(x, y)
(

f (x) − f (y)
)
, with f ∈ Cc(G) (1.1)

and the so-called adjacency matrix,

(AG,◦ f )(x) :=
∑
y∼x

E(x, y) f (y), with f ∈ Cc(G). (1.2)

Both of them are symmetric and thus closable. We denote the closures by �G and AG , their domains
by D(�G) and D(AG), and their adjoints by (�G)∗ and (AG)∗, respectively. In Ref. 20, see also
Ref. 12, it is shown that the operator �G is essentially self-adjoint on Cc(G), when the graph is
simple. In particular, one has that �G = (�G)∗. In contrast, even in the case of a locally finite tree G,
AG may have many self-adjoint extensions, see Refs. 11,16, and 18 and Proposition 1.2 for concrete
examples. We mention also the work (Ref. 2) where a characterization in terms of limit point – limit
circle is given.

In this note, we are also interested in the discrete Schrödinger operators AG + V and �G + V
with potential V := V → R, where V also denotes the operator of multiplication with the function
V . The operators are defined as the closures of AG,◦ + V and of �G,◦ + V on Cc(G), respectively.
Note that �G , up to sign, is in fact a discrete Schrödinger operator formed with the help of AG ,

�G = V − AG, where V(x) :=
∑
y∼x

E(x, y). (1.3)

In the sequel, we investigate the number of possible self-adjoint extensions of discrete Schrödinger
operators by computing their deficiency indices. Given a closed and densely defined symmetric
operator T acting on a complex Hilbert space, the deficiency indices of T are defined by η±(T ) :=
dimker (T ∗ ∓ i) ∈ N ∪ {+∞}. We recall some well-known facts. The operator T possesses a self-
adjoint extension if and only if η+(T ) = η−(T ). If this is the case, we denote the common value by
η(T ). T is self-adjoint if and only if η(T ) = 0. Moreover, if η(T ) is finite, the self-adjoint extensions
can be explicitly parametrized by the unitary group U (n) in dimension n = η(T ). Using the Krein
formula, it follows that the absolutely continuous spectrum of all self-adjoint extensions is the same.

Since the operator AG + V commutes with the complex conjugation, its deficiency indices are
equal, e.g., [Ref. 19, Theorem 10.3]. We denote by η(G) the common value, when V = 0. This
means that AG + V possesses a self-adjoint extension. Remark that η(AG + V) = 0 (respectively
η(�G + V) = 0) if and only if AG + V (respectively �G + V) is essentially self-adjoint on Cc(G).
We give the following criteria for essential self-adjointness:

Proposition 1.1: Let G = (E, V ) be a locally finite graph and V : V → R be a potential. Then,
the following assertions hold true:

1. Provided that V is bounded from below, �G + V is essentially self-adjoint on Cc(G).
2. Let x0 ∈ V , set bi := sup{∑x,y E(x, y) | ρV (x0, x) = i and ρV (x0, y) = i + 1}, and take V :

V → R. If
∑

i∈N 1/bi = +∞, then AG + V and �G + V is essentially self-adjoint on Cc(G).
3. Suppose that supx maxy∼x |dG(x) − dG(y)| < ∞, E is bounded, and supx∈V |V(x)/dG(x)| <

∞, then AG + V is essentially self-adjoint on Cc(G).
4. Suppose that dG is bounded, supx maxy∼x |E(x) − E(y)| < ∞, where E(x) :=

maxy∼x E(x, y), and that supx∈V |V(x)/E(x)| < ∞, then AG + V is essentially self-adjoint
on Cc(G).

5. Suppose there is a compact set K ⊂ V , such that
∑

y∼x E2(x, y)dG(y) ≤ V2(x) for all x /∈ K .
Then AG + V is essentially self-adjoint on Cc(G).

6. Suppose there is a compact set K ⊂ V , such that
∑

y∼x E2(x, y)
(
1 + dG(y)

) ≤ V2(x) for all
x /∈ K , then �G + V is essentially self-adjoint on Cc(G).

We prove the result in Sec. II B. The first point is the discrete version of the fact that given a non-
negative potential V ∈ L2

loc(Rn), one has that −�Rn + V is essentially self-adjoint on Cc(Rn), e.g.,
[Ref. 19, Theorem 10.28]. It is essentially a repetition of [Ref. 20, Theorem 1.3.1]. The second point

Downloaded 05 Nov 2012 to 131.188.201.33. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



063512-3 Deficiency indices for discrete operators J. Math. Phys. 52, 063512 (2011)

is a Carleman-type condition, see, for instance, [Ref. 3, page 504] for the case of Jacobi matrices.
We stress that this result holds true without any hypothesis of size or of sign on the potential part. In
particular, the Schrödinger operators could be unbounded from below and from above, see Ref. 11,
for instance. Unlike in Ref. 3, we rely on an commutator approach, see Refs. 21 and 22 for similar
techniques. The points (3) and (4) follow by application of the Nelson commutator Theorem. The
last two ones are an application of Wüst’s Theorem by considering A and � as perturbation of the
potential. We mention the works of Refs. 6, 13, and 15 on related questions.

Concentrate a moment on the case of the adjacency matrix for simple graphs. Keep in mind,
it is no gentle perturbation of the Laplacian, see Proposition 2.1. In Refs. 16 and 18, adjacency
matrices for simple trees with positive deficiency indices are constructed. In fact, it follows from
the proof that the deficiency indices are infinite in both references. We recall that a tree is a
connected graph G = (E, V ) such that for each edge e ∈ V × V with E(e) �= 0 the graph (Ẽ, V ),
with Ẽ := E × 1{e}c , i.e., with e removed, is disconnected. As a general result, a special case of
Theorem 1.1 gives that, given a locally finite simple tree G, one has

η(G) ∈ {0,+∞}. (1.4)

This is a new result to our knowledge, although the literature on trees is extensive. We believe that,
given a simple graph G = (E, V ), or more generally, a graph with bounded weights, (1.4) should be
true. In Remark 2.2, we explain that it is enough to prove (1.4) for simple bi-partite graphs. We recall
that a bi-partite graph is a graph so that its vertex set can be partitioned into two subsets in such a
way that no two points in the same subset are neighbors. Trees are bi-partite for instance. We stress
that this conjecture is false if one takes unbounded weights, see, for instance, counter-examples of
adjacency matrices given by Jacobi matrices in [Ref. 11, Remark 2.1] and also in Ref. 16.

We now point out that the self-adjointness of the adjacency matrix, acting on a simple locally
finite tree G, is linked with the growth of the offspring, i.e., of the number of sons. (We refer to
Sec. III A for precise definitions concerning trees.) When the latter grows up to linearly, Proposition
1.1 gives that η(G) = 0. On the other hand, if the growth is “exponential,” Proposition 3.1 assures
that η(G) = ∞. In Sec. III B, using invariant spaces, we prove the following sharp result.

Proposition 1.2: Let α > 0 and G be a tree with offspring �nα� per individual at generation n.
Then, one obtains

η(G) =
{

0, i f α ≤ 2,

+∞, i f α > 2.

We come back to the general question for Schrödinger operators and give our main result in
the context of trees. We prove it in Sec. III E and generalize it in Theorem 4.1 to a family of graphs
obtained recursively.

Theorem 1.1: Let G = (E, V ) be a locally finite weighted tree, where E is bounded, and let
V : V → R be a potential. Then one has

η(AG + V) ∈ {0,+∞} and η(�G + V) ∈ {0,+∞}. (1.5)

In particular, one obtains η(G) ∈ {0,+∞}.
Moreover, in Sec. III D, we prove some generic results for random trees and their deterministic

Schrödinger operators. We obtain

Proposition 1.3: Let G = (E, V ) be a random tree with independent and identically distributed
(i.i.d.) offspring. Suppose that the offspring distribution has finite expectation. Then for almost all
trees, the Schrödinger operators AG + V and �G + V are essentially self-adjoint on Cc(G), for all
potentials V : V → R. In particular, almost surely, one gets η(G) = 0.

We refer to Sec. III D for definitions, a proof of this result, and also for Proposition 3.2, which
treats the case of random offspring at a given generation.

We now present the structure of the paper. We start by proving, in Sec. II A, that the domains of
the Laplacian and of the adjacency matrix are different for simple graphs of unbounded degree. Then,
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in Sec. II B, we prove Proposition 1.1. Next, we present our main tool in Sec. II C. Subsequently,
after giving a few definitions in Sec. III A, we discuss the setting of trees. We start by explaining
in Sec. III B how to reduce in some cases the analysis of adjacency matrices to the one of Jacobi
matrices. After that, in Sec. III C, we provide an example of tree G with “exponential growth” such
that η(G) = ∞. Then, we prove Proposition 1.3 in Sec. III D. Next, in Sec. III E, we prove the first
main result of the introduction, namely, Theorem 1.1 and generalize it in Sec. IV. Finally in the
Appendix , we recall a general result of stability of deficiency indices, proposition A.1, and deduce
a criterion for essential self-adjointness of Jacobi matrices, which possess unbounded diagonals.

Notation: The set of nonpositive integers is denoted by N, note that 0 ∈ N. Given a set X and
Y ⊆ X let 1Y : X → {0, 1} be the characteristic function of Y , namely, 1−1

Y {1} = Y . We denote also
by Y c the complement set of Y in X .

II. GENERAL RESULTS

A. Comparison of domains

In view of Proposition A.1, it is tempting to try to prove that the adjacency matrix AG is self-
adjoint by comparing it to the discrete Laplace operator �G . (Remember that the latter is always
essentially self-adjoint on Cc(G) by Proposition 1.1.) But, as a matter of fact, if the graph G is simple
and has unbounded degree, we prove in this section that this is impossible.

Given a locally finite graph G = (E, V ) and a potential V : V → R, we set HG := AG + V .
We first recall that the domain of the adjoint is given by

D
(
(HG)∗

) =
{

f ∈ �2(G), x �→
(∑

y∼x

E(x, y) f (y)

)
+ V(x) f (x) ∈ �2(G)

}
.

Then, given f ∈ D((HG)∗), one has

(
(HG)∗ f

)
(x) =

(∑
y∼x

E(x, y) f (y)

)
+ V(x) f (x), for all x ∈ V .

We prove the result by

Proposition 2.1: Consider G = (E, V ) and suppose there is a sequence (xn)n∈N of points in V ,
so that

lim
n→∞

∑
y∼xn

E2(y, xn) = ∞ and lim
n→∞

(∑
y∼xn

E(y, xn)
)2

∑
y∼xn

E2(y, xn)
= ∞. (2.1)

Then,D(�G) �= D(AG). In particular, the conclusion holds true when G is simple and has unbounded
degree.

Proof: We suppose thatD(�G) = D(AG). Therefore, the uniform boundedness principle ensures
that there are a, b ≥ 0 such that

‖�G f ‖2 ≤ a‖AG f ‖2 + b‖ f ‖2, for all f ∈ D(AG). (2.2)

We note now that one has that ‖�G(1{xn})‖2 = ∑
y∼xn

E2(y, xn) + (∑
y∼xn

E(y, xn)
)2

and also that
‖AG(1{xn})‖2 = ∑

y∼xn
E2(y, xn). Taking f = 1{xn} in (2.2) leads to a contradiction.

Finally, when G is simple and has unbounded degree, consider a sequence (xn)n∈N , so that
dG(xn) tends to infinity. �
B. Essential self-adjointness of discrete Schrödinger operators

We prove some criteria of self-adjointness for Schrödinger operators.
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Proof of Proposition 1.1: We start with the first point and mimic [Ref. 20, Theorem 1.3.1].
Using Proposition A.1, it is enough to suppose that V is non-negative. Take f ∈ D

(
(�G + V)∗

)
so

that (�G + V)∗ f = − f . Since �G + V is non-negative, it is enough to prove that f = 0. Notice
that one has, for all x ∈ V ,

∑
y∼x

E(x, y) f (y) =
(

1 + V(x) +
∑
y∼x

E(x, y)
)

f (x).

Therefore, given x ∈ V , there exists y ∼ x with | f (y)| > | f (x)|. This is in contradiction to the fact
that f ∈ �2(G).

We turn to the second point. As there is no restriction on V , it is enough to consider the
case of H := AG + V . We denote by Si := {x ∈ V, ρV (x0, x) = i} the sphere of radius i ∈ N
around x0 ∈ V . For n ∈ N, consider an : N → [0, 1] with finite support and set χn := ∑

i∈N an(i)1Si

and χ̃n := 1 − χn . We see immediately that χnD(H∗) ⊂ D(H ) ⊂ D(H∗). Then, the commutator
[H∗, χn], defined on D(H∗), is well defined (in the operator sense). Easily, it extends to a bounded
operator, which we denote by [H∗, χn]◦. We take f ∈ D(H∗) and will prove that it is also contained
in D(H ) by approximating it with fn := χn f . We have

‖ fm − fn‖ + ‖H ( fm − fn)‖ ≤ ‖(χm − χn) f ‖ + ‖(χm − χn)H∗ f ‖
+ ‖[H∗, χn] f ‖ + ‖[H∗, χm] f ‖.

(2.3)

We now choose an in order to make ( fn)n∈N a Cauchy sequence with respect to the graph norm of
H . Set

an(i) :=
{

1, for i ≤ n,

min
{
1, max{0, 1 − 1

n

∑i
j=n+1 1/b j }

}
, for i > n.

(2.4)

Notice that an has finite support, since
∑

j∈N 1/b j = +∞. This gives that χn f and χn H∗ f tend to
f and H∗ f , respectively. It remains to control the commutator in (2.3). By the Schur test and (2.4),
we have

‖[H∗, χ̃n]◦‖ ≤ sup
v∈V

∑
w∈V

|〈1{v}, [H∗, χ̃n]◦ 1{w}〉| = sup
v∈V

∑
w∈V

|〈1{v}, [AG, χ̃n]1{w}〉|

= sup
v∈V

∑
w∈V

E(v,w)|χn(w) − χn(v)| = sup
v∈V

∑
w∈V,ρV (w,v)=1

E(v,w)|χn(w) − χn(v)| ≤ 1

n
.

Returning to (2.3), this implies that fn is a Cauchy sequence in D(H ). Let g be its limit. Since H is
closed, g ∈ D(H ) and g = f .

We turn to (3) and (4). Taking in account the contribution of the potential, we essentially rewrite
[Ref. 11, Proposition 1.1]. Take f ∈ Cc(G). For dG bounded let M (x) := E(x) and for E bounded
let M (x) := dG(x). Let M be the operator of multiplication by M (·), too. We denote all constants,
which are independent from f , by the same letter C . We have

‖(AG + V) f ‖2 ≤ 2
∑

x

∣∣∣∑
y∼x

E(x, y) f (y)
∣∣∣2

+ 2‖V f ‖2 ≤ 2
∑

x

dG(x)E2(x)
∑
y∼x

| f (y)|2 + 2‖V f ‖2

≤ 2
∑

x

dG(x) max
y∼x

(dG(y))E2(x)| f (x)|2 + 2‖V f ‖2

≤ 2
∑

x

E2(x)dG(x)
(
C + dG(x)

)| f (x)|2 + 2‖V f ‖2 ≤ C‖M f ‖2.
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Moreover, noticing that the potential V commutes with M , we get

|〈 f, [AG,M ] f 〉| =
∣∣∣∑

x

f (x)
∑
y∼x

E(x, y)
(
M (y) − M (x)

)
f (y)

∣∣∣
≤

∑
x

∑
y∼x

C |E1/2(x) f (x)| |E1/2(y) f (y)|

≤ c
∑

x

dG(x)|E1/2(x) f (x)|2 ≤ C
∥∥M 1/2 f

∥∥2
.

Then, using [Ref. 19, Theorem 10.36], the result follows.
We deal now with the fifth point. As a potential is essentially self-adjoint on Cc(G), thanks to

Wüst’s Theorem, e.g., [Ref. 19, Theorem 10.14], it is enough to prove that there is b ≥ 0 so that,

‖AG f ‖2 ≤ ‖V f ‖2 + b‖ f ‖2, for all f ∈ Cc(G). (2.5)

As x �→ V(x)1K (x) is bounded, it is enough to prove (2.5) with b = 0 and under the stronger
hypothesis:

∑
y∼x E2(x, y)dG(y) ≤ V2(x) for all x ∈ V . The statement is now obvious as, for all

f ∈ Cc(G), one has

‖AG f ‖2 =
∑
x∈V

∑
y∼x

|E(x, y) f (y)|2 ≤
∑
x∈V

∑
y∼x

dG(x)E2(x, y)| f (y)|2 =
∑
x∈V

∑
y∼x

dG(y)E2(x, y)| f (x)|2.

Finally, by using the last inequality and by taking into account the diagonal part of the Laplacian,
one has, for all f ∈ Cc(G),

‖�G f ‖2 ≤
∑
x∈V

(∑
y∼x

dG(y)E2(x, y) + E2(x, y)
)
| f (x)|2.

Wüst’s Theorem gives the last point. �
Remark 2.1: Given a ∈ [0, 1), note that if one strengthens the assumption in the fourth point to∑

y∼x

E2(x, y)dG(y) ≤ aV2(x), for all x /∈ K

the previous proof and the Kato-Rellich theorem (or more generally Proposition A.1) ensures
D(AG + V) = D(V ), too. In the same spirit, if one supposes that

∑
y∼x E2(x, y)

(
1 + dG(y)

) ≤
aV2(x) for all x /∈ K in the fifth point, one gets also D(�G + V) = D(V ).

C. Bounded perturbations of graphs and deficiency indices

In this section, we compute the deficiency indices, in the case one adds up to a given number of
edges per vertex to a countable union of graphs. We slightly improve the surgery Lemma of Ref. 11.

Lemma 2.1: Given a sequence of graphs Gn = (En, Vn), for n ∈ N, let G◦ := (E◦, V ◦) :=⋃
n∈N Gn be the disjoint union of {Gn | n ∈ N}. Choose Ẽ : V ◦ × V ◦ → [0,∞), so that Ẽ is

symmetric, with support away from the diagonal. Set G := (E, V ) with V = V ◦ and E := E◦ + Ẽ .
Suppose that

sup
x∈V

∑
y∈V

d̃G(y)Ẽ2(x, y) < ∞, (2.6)

where d̃G(x) := |{y ∈ V, Ẽ(x, y) �= 0}|. Consider a potential V : V → R. Set HG := AG + V and
HGn := AGn + V|Gn . Then, one obtains

η(HG) =
∑
n∈N

η(HGn ).

In particular, η(G) = ∑
n∈N η(Gn).
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Proof: Take f ∈ Cc(G) = Cc(G◦). Set HG◦ := ⊕
n∈N HGn . Notice that

‖(HG − HG◦) f ‖2 =
∑
x∈V

∣∣∣∑
y∈V

Ẽ(x, y) f (y)
∣∣∣2

≤
∑
x∈V

∑
y∈V

d̃G(x)Ẽ2(x, y)| f (y)|2

=
∑
x∈V

(∑
y∈V

d̃G(y)Ẽ2(x, y)
)
| f (x)|2.

We infer, there is a finite M , so that ‖(HG − HG◦) f ‖ ≤ M‖ f ‖, for all f ∈ Cc(G) = Cc(G◦). Then,
the closure of (HG − HG◦) is a bounded operator and Proposition A.1 can be applied.

Alternatively, one can conclude using an argument of Ref. 11. Since the closure of (HG − HG◦)
is a bounded operator, the graph norms of HG and of HG◦ are equivalent when restricted to Cc(G).
By taking the closure, we infer D(HG) = D(HG◦). Moreover, using again the boundedness of the
difference and the definition of the domain of the adjoints of HG and of HG◦ , one gets directly
D((HG)∗) = D((HG◦)∗). Finally, since the deficiency indices η±(HG) of HG are equal (and of HG◦ ,
resp.), (A1) gives that η(HG) = η(HG◦). �

Example 2.1: Given a locally finite graph G := (E, V ) with bounded weights E and a set
of vertices X ⊆ V , such that sup dG(X ) < ∞, then the induced graph G ′ = G[V \X ], obtained by
removing the vertices in X, has deficiency index η(G ′) = η(G).

D. Tensor products and deficiency indices

For the sake of completeness and motivated by Remark 2.2 (see below), we discuss shortly
the tensor product of graphs regarding the computation of deficiency indices. We recall that given
two graphs Gi = (Ei , Vi ), i = 1, 2, one defines the tensor product G := (E, V ) of G1 with G2

by setting V := V1 × V2 and E
(
(x1, x2), (y1, y2)

)
:= E(x1, y1) · E(x2, y2). One sees that AG1⊗G2 =

AG1 ⊗ AG2 . We turn to the question of deficiency indices. It is well-known that η(G1 ⊗ G2) = 0
if η(G1) = η(G2) = 0, e.g., [Ref. 19, Theorem 7.33]. One has also that η(G1 ⊗ G2) = ∞, when
η(G1) = ∞ and η(G2) > 0. In fact, in the general case, one obtains easily a lower bound on the
deficiency indices.

Lemma 2.2: Given two symmetric operators S, T acting on the Hilbert spaces H and K ,
respectively. Let η = maxi∈{±}

(
ηi (S) · ηi (T )

)
, with the convention 0 · ∞ = 0. Then, η±(S ⊗ T ) ≥ η.

Proof: We recall that, given a symmetric operator H , z �→ dimker(H∗ − z) is constant on
the upper and lower open half-planes of C. Therefore, it is enough to give a lower bound for
dimker(S∗ ⊗ T ∗ − z2), for z = eiπ(1/2±1/4)). Take f ∈ D(S∗) and g ∈ D(T ∗), so that S∗ f = z f and
T ∗g = zg. One has

S∗ ⊗ T ∗( f ⊗ g) − z2 f ⊗ g = (S∗ f − z f ) ⊗ T ∗g + z f ⊗ (T ∗g − zg) = 0.

This concludes the proof. �
It is, however, more important to obtain the exact value of the deficiency indices. We recall the

following elementary fact:

Lemma 2.3: Let G be a locally finite graph and K be a finite graph. Then, one deduces

η(G ⊗ K ) = η(G) · dim(Im(AK )).

Proof: As AK is self-adjoint in a finite dimensional Hilbert space, we can decompose it
with the help of its eigenspaces. We have AK = ⊕

i λi 1Ei , where Ei is the eigenspace associ-
ated to the eigenvalue λi . Note that (AG⊗K )∗ = ⊕

i λi (AG)∗ ⊗ 1Ei . To conclude, we notice that
dim

(
ker((AG)∗ ⊗ 1Ei + i)

) = dim
(
ker((AG)∗ + i)

) × dim1Ei . �
We now come back to the conjecture mentioned in the introduction following (1.4).
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Remark 2.2: The complete graph K2 = (E2, V2) is defined by V2 := {0, 1} and E2(0, 1) = 1.
Note that AK2 is injective. Its spectrum is {−1, 1}. Given a locally finite graph G, the previous lemma
states that η(G ⊗ K2) = 2η(G). Moreover, note that G ⊗ K2 is bipartite. Therefore if (1.4) is true
for all bipartite simple graphs, then it is true for all simple graphs.

III. THE CASE OF A TREE

A. Some definitions related to trees

It is convenient to choose a root in the tree. Due to its structure, one can take any point of V .
We denote it by ε.

We define inductively the spheres Sn by S−1 = ∅, S0 := {ε}, and Sn+1 := NG(Sn)\Sn−1. Given
n ∈ N, x ∈ Sn , and y ∈ NG(x), one sees that y ∈ Sn−1 ∪ Sn+1. We write x ∼> y and say that x is a
son of y, if y ∈ Sn−1, while we write x <∼ y and say that x is a father of y, if y ∈ Sn+1. Notice that
ε has no father. Given x �= ε, note that there is a unique y ∈ V with x ∼> y, i.e., everyone apart
from ε has one and only one father. We denote the father of x by ←−x . Given x ∈ Sn , we set �(x) := n,
the length of x . The offspring of an element x is given by off(x) := |{y ∈ NG(x), y ∼> x}|, i.e., it
is the number of sons of x . When �(x) ≥ 1, note that off(x) = dG(x) − 1.

B. Diagonalization in the case of an offspring depending on the generation

In this section, we define a certain family of trees. Then, we explain how to explicitly diagonalize
the adjacency matrices on them. We start with a definition.

Definition 3.1: A simple tree G = (E, V ) with offspring sequence (bn)n∈N is a simple tree with
a root such that bn = off(x), for each x ∈ Sn and n ∈ N.

In Proposition 3.2, we consider a family of trees with random offspring per individual and
generation. At the moment, we focus on the deterministic case and give a concrete example,

Now we adapt the decomposition of a tree given in Ref. 1, see also Ref. 10, in order to write the
adjacency matrix as a direct sum of Jacobi matrices. We consider the tree G = (E, V ) with offspring
sequence (bn)n∈N . We define

(U f )(x) := 1{∪n≥1 Sn}(x)
1√

b�(←−x )

f (←−x ), for f ∈ �2(G).

Easily, one get ‖U f ‖ = ‖ f ‖, for all f ∈ �2(G). Moreover, it is a completely non-unitary isometry,
i.e., it is an isometry, such that the strong limit s-lim

k→∞
(U ∗)k = 0. The adjoint U ∗ of U is given by

(U ∗ f )(x) := 1√
b�(x)

∑
y∼>x

f (y), for f ∈ �2(G).
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Note that one has

(AG f )(x) =
√

b�(←−x ) (U f )(x) + √
b�(x) (U ∗ f )(x), for f ∈ Cc(G).

Supposing now that bn ≥ 1 for all n ∈ N, we construct invariant subspaces for AG . We start by
noticing that dim �2(Sn) = ∏

i=0,...,n−1 bn , for n ≥ 1 and dim �2(S0) = 1. Therefore, as U is an
isometry, U�2(Sn) = �2(Sn+1) if and only if bn = 1. Set Q0,0 := �2(S0) and Q0,k := U kQ0,0, for
all k ∈ N. Note that dim Q0,k = dim �2(S0) = 1, for all k ∈ N. Moreover, given f ∈ �2(Sk), one
has f ∈ Q0,k if and only if f is constant on Sk . We define recursively Qn,n+k for k, n ∈ N. Given
n ∈ N, suppose that Qn,n+k is constructed for all k ∈ N, and set

• Qn+1,n+1 as the orthogonal complement of
⊕

i=0,...,n Qi,n+1 in �2(Sn+1),
• Qn+1,n+k+1 := U kQn+1,n+1, for all k ∈ N\{0}.

We sum-up the construction in the following diagram:

We point out that dim Qn+1,n+1 = dimQn+1,n+k+1, for all k ∈ N and stress that it is 0 if and
only if bn = 1. Notice that U ∗Qn,n = 0, for all n ∈ N. Set finally Mn := ⊕

k∈N Qn,n+k and note
that �2(G) = ⊕

n∈N Mn . Moreover, one has that canonically Mn � �2(N;Qn,n) � �2(N) ⊗ Qn,n .
In this representation, the restriction An of AG to the space Mn is given by the following tensor
product of Jacobi matrices,

An �

⎛
⎜⎜⎜⎜⎜⎝

0
√

bn 0 0 · · ·√
bn 0

√
bn+1 0

. . .

0
√

bn+1 0
√

bn+2
. . .

...
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ ⊗ 1Qn,n .

Now AG is given as the direct sum
⊕

n∈N An in ⊕n∈NMn . In particular, η(G) = ∑
n∈N η(An). Note

that if bn = 1, for all n ∈ N, we recover the case of the adjacency matrix of the simple graph N.
We now turn to the case of bn := �nα�, for some α > 0.

Proof of Proposition 1.2: The sum
∑

n∈N 1/
√

bn is finite if and only if α > 2. Then [Ref. 3,
page 504] yields that An = (An)∗ for α ∈ [0, 2] and n ∈ N. One infers that η(G) = 0. Now, easily
one sees that bi−1bi+1 ≤ b2

i , for i ≥ 1. Thus, [Ref. 3, page 507] gives that η(An) = dim(Qn,n). This
completes the proof. �
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C. Trees with exponential growth and non-essential self-adjointness

In Sec. II B, we focused on trees with given offspring per individual for each generation. We
now replace this hypothesis by a control on the maximum and on the minimum of the offspring of
individuals for each generation. We turn to the result, see also Refs. 16 and 18.

Proposition 3.1: Let G = (E, V ) be a locally finite simple tree, endowed with an origin. Sup-
posing

n �→ maxx∈Sn−1 off(x)

minx∈Sn off(x)
∈ �1(N), (3.1)

one has that η(G) = ∞.
Condition (3.1) can be interpreted as an “exponential growth.”

Proof: We construct f ∈ �2(G)\{0}, so that (AG)∗ f = i f and

f (x) = f (y), if ←−x = ←−y , (x, y ∈ V \{ε})
i.e., for all x ∈ V , f is constant on off(x). We denote the constant value by f (∼> x). With this
notation, we have

off(x) f (∼> x) + f
(←−x ) = i f (x), (3.2)

for all x ∈ Sn , with n ≥ 1. We denote by ‖ f ‖Sn the �2-norm of f restricted to Sn . Then we have

‖ f ‖2
Sn+1

=
∑

x∈Sn−1

∑
y∼>x

∑
z∼>y

| f (z)|2 =
∑

x∈Sn−1

∑
y∼>x

∑
z∼>y

| f (∼> y)|2,

≤
∑

x∈Sn−1

∑
y∼>x

∑
z∼>y

2

off2(y)

(| f (y)|2 + | f (x)|2) , by (3.2)

≤ 2
maxx∈Sn−1 off(x)

minx∈Sn off(x)
‖ f ‖2

Sn−1
+ 2

minx∈Sn off(x)
‖ f ‖2

Sn
.

By induction, one sees that supn∈N ‖ f ‖2
Sn

is finite. Finally using (3.1), we derive that f ∈ �2(G).
Theorem 1.1 concludes that the deficiency indices are infinite. �

D. Discrete Schrödinger operators and random trees

In this section, we discuss certain random trees. Before dealing with random trees in the sense
of Definition 3.2, we start with trees with random offspring sequence, see Definition 3.1.

We recall some well-known notions from probability theory. The left shift on NN is defined by
τ : NN → NN , τ

(
(xn)n∈N

)
:= (xn+1)n∈N . We assign the discrete topology to N and the product

topology to NN . Therefore, τ is continuous. An N-valued stochastic process X := (Xn)n∈N , is
called ergodic, if for all Borel-measurable A ⊆ NN , one has

P
(
X ∈ A and τ (X ) �∈ A

) + P
(
X �∈ A and τ (X ) ∈ A

) = 0 ⇒ P(X ∈ A) ∈ {0, 1}
and stationary, if

P(X ∈ A) = P
(
τ (X ) ∈ A

)
for all Borel-measurable A ⊆ NN . For example, if Xn , n ∈ N, are i.i.d. random variables then the
process (Xn)n∈N is stationary and ergodic.

Proposition 3.2: Let G = (E, V ) be a tree with offspring sequence (bn)n∈N , where (bn)n∈N is
a stationary and ergodic stochastic process. Then for almost every G, the Schrödinger operators
AG + V and �G + V are essentially self-adjoint on Cc(G), for all V : V → R.
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Proof: Take m ∈ N, so that P(b0 = m) > 0. Since (bn)n∈N is a stationary and ergodic N-valued
stochastic process, there is, almost surely, a subsequence (bnk )k∈N with bnk = m for all k ∈ N.
Consider now the forest of finite trees obtained by removing all edges between Snk and Snk+1, for
all n ∈ N. Note that, for each element of Snk+1, there is at most one edge connecting it to Snk . The
Schrödinger operators, restricted to the finite trees, are all essentially self-adjoint. Lemma 2.1 gives
the result. �

Next we consider random trees. Denote by W := ⋃
n∈N (N∗)n the set of all finite words over

the alphabet N∗ := N\{0}. The length of a word w = (w1, . . . , wn) ∈ W is �(w) := n.

Definition 3.2: Let (Xw)w∈W be a family of i.i.d. random variables with values inN. We construct
a graph G = (E, V ) as follows:

V := {
(w1, . . . , wn) ∈ W | wm+1 ≤ X (w1,... ,wm ) for all m ∈ N, m < n

}
and

E(v,w) :=
{

1 if {�(v), �(w)} = {n, n + 1} and (v0, . . . , vn) = (w0, . . . , wn)

0 otherwise,

for v = (v1, . . . , v�(v)), w = (w1, . . . , w�(w)) ∈ V . We call G random tree with i.i.d. offspring. The
law of Xε is called offspring distribution of G.

Note that a random tree is a tree with the empty word ε as root. Words of length n correspond
to Sn , the n-sphere. Hence, the notation � of the length is consistent with the one given in Sec. III A.

Proposition 3.3: Let G = (E, V ) be a random tree with i.i.d. offspring, such that its offspring
distribution has finite expectation. Then almost surely there are M ≥ 1 and a family (Gi )i∈N of
disjoint finite subtrees Gi := (Ei , Vi ) of G, so that V = ⋃

i∈N Vi

sup
i∈Vi

max
x∈max(Vi )

off(x) ≤ M, (3.3)

where max(Vi ) := {x ∈ Vi , (y ∼> x in G) ⇒ y /∈ Vi }, for all i ∈ N.

Proof: Since the offspring distribution has finite expectation, there is M ∈ N such that∑
m>M

m P(Xε = m) < 1. (3.4)

Let G̃ := G\L be the forest one gets by deleting all the edges in

L := {(v,w) ∈ V × V | �(v) < �(w), offG(v) ≤ M}
from G. Each connected component in G̃ is a random tree with independent offspring. Denote
by Ĝ = (Ê, V̂ ) a connected component of G̃. The expected number of sons in Ĝ is given by the
lhs in (3.4). It is well known that such family trees almost surely get extinct, see e.g., Ref. 14,
Theorem 3.11]. Therefore all the connected components of G̃ are almost surely finite. We present a
proof here.

The tree Ĝ has a root ŵ0 ∈ V̂ with �(ŵ0) = min{�(ŵ) | ŵ ∈ V̂ }. We define the n-sphere of
Ĝ to be Ŝn := {ŵ ∈ V̂ | �(ŵ) = n + �(ŵ0)} and denote by X̂ŵ := offĜ(ŵ) the number of sons of
ŵ ∈ V̂ in Ĝ. The random variable Ŷn := |Ŝn| fulfills Ŷn = ∑

ŵ∈Ŝn−1
X̂ŵ and is hence measurable with

respect to the σ -algebra F̂n := σ
(
X̂ŵ

∣∣ ŵ ∈ ⋃n−1
j=0 Ŝ j

)
. Therefore the stochastic process (Ŷn)n∈N is

adapted to the filtration (F̂n)n∈N . With (3.4), for all n ∈ N we have

E
[
Ŷn+1

∣∣ F̂n
] =

∑
ŵ∈Ŝn

E
[
X̂ŵ

∣∣ F̂n
] =

∑
ŵ∈Ŝn

E[X̂ŵ] = ŶnE[X̂ŵ0 ] ≤ Ŷn. (3.5)

Hence, the process (Ŷn)n∈N is a supermartingale. Since Ŷn ≥ 0, the martingale convergence theorem
guarantees that Yn converges almost surely. We denote its limit by Ŷ . With (3.5) we entail

0 ≤ E[Ŷn] = E
[
E[Ŷn | F̂n−1]

] = E
[
Ŷn−1E[X̂ŵ0 ]

] = E[Ŷn−1]E[X̂ŵ0 ] = (
E[X̂ŵ0 ]

)n
.
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In view of (3.4), Fatou’s Lemma ensures that E[Ŷ ] = 0 and therefore that Ŷ = 0 almost surely.
Finally, since Ŷ assumes only integer values, for almost every realization of (Ŷn)n∈N there exists
N ∈ N with Ŷn = 0 for all n ≥ N . �

It remains to prove the announced result.

Proof of Proposition 1.3: Almost surely, Proposition 3.3 gives a forest of finite trees Gi =
(Ei , Vi ). On each of them, the restriction of the Schrödinger operator is essentially self-adjoint,
as �2(Gi ) is finite dimensional. Moreover, as

⋃
i∈N Vi = V and (3.3) holds true, the hypothesis of

Lemma 2.1 are satisfied and the result follows. �

E. The possible indices

We now prove our main result in the context of trees and improve it in Sec. IV. This is a proof
by contradiction.

We start with some notations about subgraphs. The connected component CG(x) of x ∈ V is
the graph CG(x) := (Ex , Vx ) with Vx := {y ∈ V, there is an x-y-path} and Ex := E |Vx ×Vx . A graph
G ′ := (E ′, V ′) is called a subgraph of G, if V ′ ⊆ V and E ′(x, y) ∈ {0, E(x, y)}, for all x, y ∈ V ′.
The subgraph G[V ′] := (E |V ′×V ′ , V ′) is called the induced graph of G by V ′ ⊆ V . Given a set
S ⊆ V × V , we denote Ssym := {(x, y), (y, x) | (x, y) ∈ S} and by Sc

sym its complement in V × V .
The graph G\S := (

E |Sc
sym

, V
)

is obtained by deleting the edges in Ssym from G.

Proof of Theorem 1.1: Suppose that G = (E, V ) is a locally finite tree with bounded weights.
In view of (1.3), it is enough to consider a discrete Schrödinger operator HG of the form AG + V
for some potential V : V → R. Suppose that HG has finite and (strictly) positive deficiency index
η(HG) > 0. Given a subgraph G ′ = (E ′, V ′) of G, we denote by HG ′ the Schrödinger operator given
by AG ′ + V|V ′ .

We construct inductively a sequence (vk)k∈N of points of V , so that vk ∼ vk+1 for all k ∈ N.
Along the way we also define a sequence of subgraphs (Gk)k∈N of G, such that Gk := (Ek, Vk) is a
tree, satisfying vk ∈ Vk and η(HGk ) ≥ η(HGk+1 ) > 0. Start with G0 := G and some v0 ∈ V . For each
k ∈ N we first remove the edges connected to vk and obtain G ′

k := Gk\({vk} × NGk (vk)). Using
Lemma 2.1 and the fact that Gk is a tree, we find

0 < η(HGk ) = η(HG ′
k
) =

∑
w∈NGk (vk )

η(HCG′
k

(w)).

Therefore there exists w ∈ NGk (vk) with η(HCG′
k

(w)) > 0. Set vk+1 := w and Gk+1 := CG ′
k
(w). As

announced the graph Gk+1 is a tree.
Since k �→ η(HGk ) is decreasing, positive, and has integer values, there is K ∈ N so that η(HGk )

is constant for all k ≥ K . Now consider G̃k := Gk[Vk\Vk+1].

The dashed line at the bottom shows the constructed path (vk)k∈N . The graphs G̃k can extend
infinitely, as indicated with the dots. For all k ∈ N the graph Gk is the union of all G̃k ′ with k ′ ≥ k
plus the dashed bottom line starting at vk .

Downloaded 05 Nov 2012 to 131.188.201.33. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



063512-13 Deficiency indices for discrete operators J. Math. Phys. 52, 063512 (2011)

Again by Lemma 2.1, we infer

η(HG̃k
) = η(HGk ) − η(HGk+1 ) = 0, for k ≥ K .

By one more application of Lemma 2.1, we obtain

0 < η(HG K ) =
∞∑

k=K

η(HG̃k
) = 0.

This is a contradiction. �

IV. RECURSIVE GRAPHS

In this section, we generalize the previous approach to graphs which satisfy a certain recursive
property. We shall use the notation related to subgraphs, which were introduced in Sec. III E. To
simplify notation, given a potential V : V → R and the Schrödinger operator HG := AG + V acting
on G = (E, V ), we shall write ηH(G) := η(HG). As above, if G ′ is a subgraph of G obtained by
removing edges, we denote by HG ′ the Schrödinger operator AG + V .

Definition 4.1: Let G = (E, V ) be a locally finite graph. Given M > 0 and V : V → R, we say
that G has the property R(M,V), if

• either ηH(G) = 0 or
• we can find a partition {B, Un, Wn | n ∈ N} of V such that

(P1) ηH(G[B]) = 0,
(P2) {Ũn, W̃n | n ∈ N} is pairwise disjoint, where Ũn := B ∩ NG(Un) and W̃n := B ∩

NG(Wn).
(P3) For m, n ∈ N, E(Un, Wm) = 0 and E(Un, Um) = 0, E(Wn, Wm) = 0 if m �= n,
(P4) ∀x ∈ B : |NG(x) ∩ Un| ≤ M and ∀x ∈ Un : |NG(x) ∩ B| ≤ M for all n ∈ N,
(P5) ∀x ∈ W̃n : |NG(x) ∩ (B\W̃n)| ≤ M and ∀x ∈ B̃\W̃n : |NG(x) ∩ B| ≤ M for all n ∈ N,
(P6) G[Un] and G[Wn ∪ W̃n] have the propertyR(M,V|Un ) andR

(
M,V|Wn∪W̃n

)
, respectively.

We explain in words, what the sets B, Un , and Wn are. The set of vertices B ⊆ V stands for
the base of the graph G. We recall that, by definition, G[B] is the restriction of the graph G to B,
see the Introduction. In the case of trees, for the kth level of recursion we use B = {vk}. We allow
more complicated situations here, for instance, ηH(B) = 0 if B has bounded degree and weights,
see also Proposition 1.1. The graphs G[Un] and G[Wn ∪ W̃n] correspond to subgraphs that we want
to cut out and to study in the next recursive step. The condition (P4) ensures that each element of the
subgraph G[Un] is linked by at most M edges to the base. On the other hand, the graph G[Wn] could
be linked to the base by a large number of edges like in the previous case for trees. In this situation,
we shall not consider G[Wn] in the next recursive step but G[Wn ∪ W̃n], which contains a part of
the base. Notice that B\⋃

n∈N W̃n is empty in the previous setting of a tree. Note that condition
(P5) makes sure that each element of the subgraph G[Wn ∪ W̃n] is linked to the remaining part of
the base with at most M edges. Condition (P2) ensures that the subgraphs G[Un] and G[Wn ∪ W̃n]
are not too close to each other. Condition (P3) tells that there are no edges between the Un and Wn .
This condition can be relaxed with Lemma 2.1, by asking that each vertices is linked with at most
M other ones.

Definition 4.1 is motivated by the fact that the recursive process splits the deficiency indices in
a conservative way.

Lemma 4.1: Suppose that G is a locally finite graph with bounded weights satisfying (P2) –
(P5). Then, using the notation of Definition 4.1,

ηH(G) = ηH
(

G
[
B\

⋃
n∈N W̃n

]) +
∑
n∈N

ηH
(
G[Un]

) + ηH
(
G[Wn ∪ W̃n]

)
. (4.1)
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Moreover, if G obeys (P1),

ηH
(

G
[
B\

⋃
n∈N W̃n

]) = 0. (4.2)

Proof: Equation (4.1) is a direct consequence of Lemma 2.1. By the same argument

0 = ηH(B) = ηH
(

G
[
B\

⋃
n∈N W̃n

]) +
∑
n∈N

ηH
(
G[W̃n]

)
.

Equation (4.2) follows, since deficiency indices are non-negative. �
Finally, we prove

Theorem 4.1: Suppose that G is a locally finite graph with bounded weights satisfying property
R(M,V), for a certain potential V . Then η(AG + V) = ηH(G) ∈ {0,∞}.

Proof: Let G be a graph fulfilling all assumptions and having finite and positive deficiency
index. As in the case of trees we construct a sequence of nested subgraphs (Gk)k∈N of G such that
for all k ∈ N

• ηH(Gk) ≥ ηH(Gk+1) > 0,

• Gk satisfies property R(M).

We set G0 := G and construct Gk+1 inductively from Gk . We use now Lemma 4.1. Taking advantage
of (4.2) in (4.1), there is a subgraph of Gk , among the family {Gk[Un(k)], Gk[Wn(k) ∪ W̃n(k)] | k ∈
N} with positive deficiency index. We call it Gk+1. By (4.1) we have ηH(Gk) ≥ ηH(Gk+1). Thanks
to (P5), Gk+1 satisfies also property R(M).

As in Theorem 1.1 we conclude that there is K ∈ N so that ηH(Gk) is constant for all k ≥ K .
Now consider G̃k := Gk[Vk\Vk+1]. By Lemma 2.1, we infer ηH(G̃k) = ηH(Gk) − ηH(Gk+1) = 0,
for k ≥ K . By construction there are at most M connections per vertex between Gk and Gk+1. By
a last application of Lemma 2.1, we obtain 0 < ηH(G K ) = ∑∞

k=K ηH(G̃k) = 0. This is the desired
contradiction. �

We finish by mentioning a possible generalization.

Remark 4.1: In the previous result, we do not suppose more than having bounded weights.
The main examples we have in mind are simple graphs. However if one considers weighted graphs
such that inf

(
E(V × V )\{0}) = 0, using (2.6), one can relax the hypothesis on the uniformity in M,

which is implemented in Definition 4.1.
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APPENDIX: STABILITY OF THE DEFICIENCY INDICES OF A SYMMETRIC OPERATOR

Given a closed and densely defined symmetric operator S, one has the obvious inclusion
D(S) ⊂ D(S∗). In fact, given z ∈ C\R, one gets the topological direct sum

D(S∗) = D(S) ⊕ ker(S∗ + z) ⊕ ker(S∗ − z). (A1)

One also knows that z �→ dim
(
ker(S∗ − z)

)
is constant on the two connected components of C\R.

Note also that dim (D(S∗)/D(S)) = η−(S) + η+(S). We refer to [Ref. 19 Section X.1] for an intro-
duction to the subject.

For the convenience of the reader and as we were not able to locate a proof in the literature, we
recall the following useful and well-known fact. It is essentially due to Kato and Rellich.
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Proposition A.1: Given two closed and densely defined symmetric operators S, T acting on a
complex Hilbert space and such that D(S) ⊂ D(T ). Suppose there are a ∈ [0, 1) and b ≥ 0 such
that

‖T f ‖ ≤ a‖S f ‖ + b‖ f ‖, for all f ∈ D(S). (A2)

Then, the closure of (S + T )|D(S) is a symmetric operator that we denote by S + T . Moreover, one
obtains that D(S) = D(S + T ) and that η±(S) = η±(S + T ). In particular, S + T is self-adjoint if
and only if S is.

Note that if S is self-adjoint, i.e., η±(S) = 0, the above result is the standard Kato-Rellich
theorem, e.g., [Ref. 19, Theorem 10.12]. In the proofs of this article, we use this result in the case
a = 0 and η−(S) = η+(S). In this setting, one can avoid this general result and repeat a shorter
argumentation, coming from.11 We explain this alternative approach at the end of the proof of
Lemma 2.1. Finally, we point out that all the results about deficiency indices of this article are stable
under the above class of perturbation, i.e., (A2) with a ∈ [0, 1).

Proof: Let θ ∈ [−1, 1]. Note that Wθ |D(S) := (S + θT ) |D(S) is symmetric and closable. Its
closure is denoted by Wθ . Using (A2), one sees that the graph norms of S and of Wθ are equivalent
on D(S). Then, we infer that Wθ is closed, symmetric and with domain D(Wθ ) = D(S). In particular,
D(S + T ) = D(S).

We concentrate on the deficiency indices. It is enough to consider the case a ∈ (0, 1) and b > 0.
Notice first that, for f ∈ D(S) and ε > 0, one obtains ‖T f ‖2 ≤ a2(1 + ε)‖S f ‖2 + b2(1 + 1/ε)‖ f ‖2

for all ε > 0. Then, since S is symmetric, we derive that

‖T f ‖2 ≤ α2‖(S ± iγ ) f ‖2, for all f ∈ D(S), (A3)

and where α2 = (1 + ε)a2 and γ =
√

b2/(εa2). Taking ε small enough, we reduce to the case
α ∈ (0, 1) and γ ≥ 1. Take now

θ1, θ2 ∈ [−1, 1], so that |θ1 − θ2| <
(1 − α)

α
. (A4)

We now prove

ker((Wθ1 )∗ ± iγ ) ∩ (
ker((Wθ2 )∗ ± iγ )

)⊥ = ker((Wθ1 )∗ ± iγ ) ∩ ran(Wθ2 ∓ iγ ) = {0}. (A5)

Given H a closed symmetric and densely defined operator, by considering Im〈y, (H ± iγ )y〉, one
sees that ‖(H ± iγ )y‖ ≥ γ ‖y‖ for all y ∈ D(H ) and that the range of (H ± iγ ) is closed. Hence,
the first equality of (A5) holds true.

Take x ∈ D
(
(Wθ1 )∗

)\{0} and in the intersection in the lhs of (A5). We finish the proof for
the minus sign. The other case is done analogous. We infer that there is z ∈ D(S)\{0}, such that
(Wθ2 + iγ )z = x . Then,

0 = 〈((Wθ1 )∗ − iγ )x, z〉 = 〈x, (Wθ1 + iγ )z〉 = ‖x‖2 + (θ2 − θ1)〈x, T z〉. (A6)

Now, with (A3), we infer (1 − α)‖T z‖ ≤ α‖(Wθ2 + iγ )z‖. Using the latter with (A4) and (A6), we
derive

‖x‖ ≤ |θ1 − θ2| · ‖T z‖ < ‖(Wθ2 + iγ )z‖ = ‖x‖,
which is a contradiction. This proves (A5) and therefore dimker(Wθ2

∗ ± iγ ) ≥ dimker((Wθ1 )∗ ± iγ ),
under the hypothesis (A4). One deduces easily that dimker((Wθ )∗ ± iγ ) = dimker(S∗ ± iγ ), for
all θ ∈ [−1, 1]. To conclude, we recall that, given a symmetric operator H , one has that z �→
dim

(
ker(H∗ − z)

)
is constant on the two connected components of C\R. �

We now give a direct application to Jacobi matrices, which act on �2(N). Given A, the closure
of a three-diagonal symmetric Jacobi matrix with an ∈ R on the diagonal and bn > 0 on the upper
diagonal, it is well known, e.g., [Ref. 3, page 504], that if

∑
n∈N 1/bn = ∞ and with no condition

on the sequence (an)n , then A∗ = A. We give a generalisation in Proposition 1.1 (2). With again no
condition on the diagonal elements, we prove now
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Proposition A.2: Let A be the closure of a (2N + 1)-diagonal (complex-)symmetric matrix
acting by A f (n) = ∑

k∈N ak,n f (k) for f : N → C with compact support and where ak,n ∈ C, for
k, n ∈ N. If

lim inf
n→∞ cn < ∞, where cn := max

0≤l<k≤K
|an−1−l,n−l+k |,

for n ≥ K , then A = A∗.

Proof: Let (cun )n∈N be a bounded subsequence of (cn)n∈N and set Bn := 1[un ,un+1−1] A 1[un ,un+1−1].

Set B be the closure of ⊕n Bn . Note that the deficiency indices of B are (0, 0), since Bn are finite
dimensional matrices. Then, remembering that supn∈N |cun | < ∞, we see that (B − A)|Cc(N) extends
to a bounded operator. Therefore, Proposition A.1 entails that A is self-adjoint. �
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